
Generalizations of Kloosterman Sums

Antonio Rojas León

December 15, 2006



Classical Kloosterman sums

I k = Fq finite field, q = pα

I ψ : k → C? non-trivial character

I a, b ∈ k?

I Klψ(a, b) =
∑

x∈k? ψ(ax + b
x )

I Problem: find a good bound for the sum
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Classical Kloosterman sums

Trivial bound:

|ψ(x)| = 1 ⇒

∣∣∣∣∣ ∑
x∈k?

ψ(ax +
b

x
)

∣∣∣∣∣ ≤ q − 1

Weil’s bound: ∣∣∣∣∣ ∑
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x
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Higher dimensional Kloosterman sums

t = ab
Klψ(a, b) =

∑
xy=t

ψ(x + y)

Kln,ψ(t) =
∑

x1···xn=t

ψ(x1 + · · ·+ xn)

Deligne:
|Kln,ψ(t)| ≤ nq(n−1)/2
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Higher dimensional Kloosterman sums

χ1, . . . , χn : k? → C? multiplicative characters
a1, . . . , an ≥ 1 prime to p

Kln,ψ,χ1,...,χn,a1,...,an(t) =
∑

x
a1
1 ···xan

n =t

ψ(x1 + · · ·+ xn)χ(x1) · · ·χ(xn)

Katz:

|Kln,ψ,χ1,...,χn,a1,...,an(t)| ≤ (a1 + · · ·+ an)q
(n−1)/2
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Exponential sums

f ∈ k[x1, . . . , xn] of degree d

Sψ(f ) =
∑

x1,...,xn∈k

ψ(f (x))

Fix an algebraic closure k ↪→ k̄
km/k the extension of degree m of k in k̄

Sψ,m(f ) =
∑

x1,...,xn∈km

ψm(f (x))

ψm(t) = ψ(Tracekm/k(t))



Exponential sums

f ∈ k[x1, . . . , xn] of degree d

Sψ(f ) =
∑

x1,...,xn∈k

ψ(f (x))

Fix an algebraic closure k ↪→ k̄
km/k the extension of degree m of k in k̄

Sψ,m(f ) =
∑

x1,...,xn∈km

ψm(f (x))

ψm(t) = ψ(Tracekm/k(t))



Exponential sums

f ∈ k[x1, . . . , xn] of degree d

Sψ(f ) =
∑

x1,...,xn∈k

ψ(f (x))

Fix an algebraic closure k ↪→ k̄
km/k the extension of degree m of k in k̄

Sψ,m(f ) =
∑

x1,...,xn∈km

ψm(f (x))

ψm(t) = ψ(Tracekm/k(t))



Exponential sums

f ∈ k[x1, . . . , xn] of degree d

Sψ(f ) =
∑

x1,...,xn∈k

ψ(f (x))

Fix an algebraic closure k ↪→ k̄
km/k the extension of degree m of k in k̄

Sψ,m(f ) =
∑

x1,...,xn∈km

ψm(f (x))

ψm(t) = ψ(Tracekm/k(t))



The L-function

L(ψ, f ,T ) = exp
∑
m≥1

Sψ,m(f )

m
Tm ∈ 1 + TQ(ζp)[[T ]]

Grothendieck: L(ψ, f ,T ) ∈ Q(ζp)(T ), in fact

L(ψ, f ,T ) =
2n∏
i=n

Pi (T )(−1)i+1

with Pi (T ) ∈ 1 + TZ[ζp][T ]
Deligne:

Pi (T ) =

di∏
j=1

(1− αi ,jT )

where αi ,j is an algebraic integer, pure of integer weight wi ,j ≤ i :

|αi ,j | ≤ qwi,j/2
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The L-function

Sψ,m(f ) =
2n∑
i=n

(−1)i
di∑

j=1

αm
i ,j

In particular,

|Sψ(f )| ≤ (dn + · · ·+ d2n)q
max{wi,j/2}

Need to estimate:

I the weights wi ,j

I the degrees di



The L-function

Sψ,m(f ) =
2n∑
i=n

(−1)i
di∑

j=1

αm
i ,j

In particular,

|Sψ(f )| ≤ (dn + · · ·+ d2n)q
max{wi,j/2}

Need to estimate:

I the weights wi ,j

I the degrees di



The L-function

Sψ,m(f ) =
2n∑
i=n

(−1)i
di∑

j=1

αm
i ,j

In particular,

|Sψ(f )| ≤ (dn + · · ·+ d2n)q
max{wi,j/2}

Need to estimate:

I the weights wi ,j

I the degrees di



Known results

Deligne (Weil I): If gcd(d , p) = 1 and the highest degree form of f
is non-singular, then di = 0 for i > n, dn = (d − 1)n and wn,j = n,
so

|Sψ(f )| ≤ (d − 1)nqn/2

Katz: If gcd(d , p) = 1 and the highest degree form of f has
singular locus of dimension ε ≥ 0, then di = 0 for i > n + 1 + ε, so

|Sψ(f )| ≤ Dq(n+ε+1)/2
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Main result

Let f = fd + fd ′ + h with fd homogeneous of degree d , fd ′

homogeneous of degree d ′ < d and h of degree < d ′, and
fd = ga1

1 · · · gar
r , deg(gi ) = ei such that fd fd ′ defines a divisor with

normal crossings in Pn−1 and gcd(p, dd ′a1 · · · ar ) = 1. Then

I di = 0 for i > n

I dn = C (d , d ′, r , e1, . . . , er )

I wn,j = n for all j = 1, . . . , dn

In particular,

|Sψ(f )| ≤ C (d , d ′, r , e1, . . . , er )q
n/2
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Xf = {(x , t)|t − tq = f (x)} ↪→ An × A1 → An

is a finite Galois cover with Galois group k

so gives a quotient map

π1(An) � k

→ C? ∼= Q̄?
`

ie. a rank one smooth `-adic sheaf Lf on An Every k-rational
point x ∈ kn gives

π1(Spec(k(x))) → π1(An)

so we get an element Fx ∈ π1(An), well defined up to conjugation,
on which the character Lf takes the value ψ(f (x)).
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On the other hand, we have cohomology groups

H i
c(An,Lf )

vanishing for i < n and i > 2n, on which Gal(k̄/k) acts.

Grothendieck’s trace formula:

∑
x∈kn

ψ(f (x)) =
2n∑
i=n

(−1)iTrace(F |H i
c(An,Lf ))

This formally implies

L(ψ, f ,T ) =
2n∏
i=n

(1− T det(F |H i
c(An,Lf )))

(−1)i+1
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Families of exponential sums

The idea of Deligne’s proof is to embed the sum Sψ(f ) in a larger
family

P = affine space parameterizing all polynomials of degree ≤ d .
U ⊂ P open subset parameterizing all polynomials such that fd is
smooth.
Then the H i

c(An,Lf ) vary smoothly on U, in particular the di ’s
and the w ′

i ,js are constant.∑
x1,...,xn∈k

ψ(xd
1 + · · ·+ xd

n ) = (
∑
x1∈k

ψ(xd
1 )) · · · (

∑
xn∈k

ψ(xd
n ))

so the result follows from Weil’s
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Families of exponential sums

In our case:
Pi = affine space parameterizing all homogeneous polynomials of
degree ei

P = affine space parameterizing all polynomials of degree ≤ d ′

U ⊂ P1 × · · · × Pr × P open subset parameterizing all
(r + 1)-tuples (g1, . . . , gr , h) such that g e1

1 · · · g er
r + h is ”good”

The fact that g1 · · · ge fd ′ defines a divisor with normal crossings
implies that the H i

c(An,Lf ) vary smoothly on U, in particular the
di ’s and the w ′

i ,js are constant.
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The Fourier transform

It is an autoequivalence of the derived category of `-adic sheaves
on An.

On the trace level, it corresponds to the usual Fourier transform
(up to sign):

F : kn → C

F̂ (t) =
∑
x∈kn

F (x)ψ(t · x)

For instance, the Fourier transform of the sheaf Lf has Frobenius
trace at t ∑

x∈kn

ψ(f (x) + t · x)

and in fact it is the restriction to a linear subspace of U of the
complex parameterizing the cohomology of the sums!
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The Fourier transform

Since the Fourier transform raises weights by n and we already
know that the cohomology sheaves vary smoothly, we deduce that
H i

c(An,Lf ) is pure of weight i : wi ,j = i for all i .

But the fact that Lf is a single sheaf does not imply the same
thing for the Fourier transform.
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Perverse sheaves

An object K in the derived category of `-adic sheaves on An is
semiperverse if the i-th cohomology sheaf has support in dimension
≤ −i .

For instance: any sheaf F placed on degree −n.
Fourier transform preserves semiperversity!
Since the cohomology groups vary smoothly, their dimension can’t
jump up, so H i

c(An,Lf ) = 0 for i > n.



Perverse sheaves

An object K in the derived category of `-adic sheaves on An is
semiperverse if the i-th cohomology sheaf has support in dimension
≤ −i . For instance: any sheaf F placed on degree −n.

Fourier transform preserves semiperversity!
Since the cohomology groups vary smoothly, their dimension can’t
jump up, so H i

c(An,Lf ) = 0 for i > n.



Perverse sheaves

An object K in the derived category of `-adic sheaves on An is
semiperverse if the i-th cohomology sheaf has support in dimension
≤ −i . For instance: any sheaf F placed on degree −n.
Fourier transform preserves semiperversity!

Since the cohomology groups vary smoothly, their dimension can’t
jump up, so H i

c(An,Lf ) = 0 for i > n.



Perverse sheaves

An object K in the derived category of `-adic sheaves on An is
semiperverse if the i-th cohomology sheaf has support in dimension
≤ −i . For instance: any sheaf F placed on degree −n.
Fourier transform preserves semiperversity!
Since the cohomology groups vary smoothly, their dimension can’t
jump up, so H i

c(An,Lf ) = 0 for i > n.



About the rank

The sheaf Lf placed on degree −n is actually perverse: its Verdier
dual is also semiperverse.

Since the Fourier transform preserves perversity, the complex
parameterizing H i

c(An,Lf ) is also perverse.
In particular, its rank can only decrease under specialization. So if
f degenerates to g , dim(An,Lf ) ≥ dim(An,Lg ).
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About the rank

Least degenerate case: fd nonsingular: C ≤ (d − 1)n

Most degenerate case: fd = gd with g linear.
Using:∑
x∈kn

ψ(xd
1 + xd ′

1 + · · ·+ xd ′
n ) = (

∑
x1∈k

ψ(xd
1 + xd ′

1 )) · · · (
∑
xn∈k

ψ(xd
n ))

we get the lower bound C ≥ d(d ′ − 1)n−1 Not good for the
Kloosterman case!
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ψ(xd
1 + xd ′

1 + · · ·+ xd ′
n ) = (

∑
x1∈k

ψ(xd
1 + xd ′

1 )) · · · (
∑
xn∈k

ψ(xd
n ))

we get the lower bound C ≥ d(d ′ − 1)n−1 Not good for the
Kloosterman case!



Formula for the rank

dn = (−1)n + d
(d ′ − 1)n − (−1)n

d ′ + (−1)n(d − d ′)χ

where

χ :=
∑

I⊆{1,...,r}
1≤|I |≤n−1

(−1)|I |−1χ(n−1; eI )−
∑

I⊆{1,...,r}
1≤|I |≤n−2

(−1)|I |−1χ(n−1; d ′, eI )

and eI stands for ei1 , . . . , eij if I = {i1, . . . , ij}.



Two dimensional case

f = fd + fd ′ + h ∈ k[x , y ]

with fd ′ squarefree and gcd(fd , fd ′) = 1, then∣∣∣∣∣∣
∑

(x ,y)∈k2

ψ(f (x , y))

∣∣∣∣∣∣ ≤ (1 + d(d ′ − 2) + r(d − d ′))q


