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Classical Kloosterman sums

k = TF, finite field, g = p*

1+ k — C* non-trivial character
a,bek*

Kly(a,b) =, oy ¥(ax + 2)

Problem: find a good bound for the sum
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Classical Kloosterman sums

Applications:

» Fourier coefficients of modular forms



Classical Kloosterman sums

Applications:

» Fourier coefficients of modular forms

» Coding theory and graph theory
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Trivial bound:

<qg-1
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Weil's bound:

> e+ )| <203

xek*
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Higher dimensional Kloosterman sums

t=ab
Kly(a,b) = Y ¢(x+y)
xXy=t
Kloy(t) = > 0a+--+xn)
X1+ Xp=t
Deligne:
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Higher dimensional Kloosterman sums

X1,---5Xn : k¥ — C* multiplicative characters
ai,...,ap>1primeto p

Kln g1 xmaryan(£) = Z Yia+ -+ xa)x(xa) - x(xn)

a
xplexan=t

Katz:

|Kln,¢,X1,~~~,Xn,a1,m,an(t)| S (al +---+ an)q(nil)/2



Exponential sums

f € k[x1,...,x,] of degree d
Sp(F)= Y ¢(f(x)

X1y, XnEK



Exponential sums

f € k[x1,...,x,] of degree d
Sp(f)= D (f(x)
X1y, XnEK

Fix an algebraic closure k — k
km/k the extension of degree m of k in k



Exponential sums

f € k[x1,...,x,] of degree d
Sp(f)= D (f(x)
X1y, XnEK

Fix an algebraic closure k — k
km/k the extension of degree m of k in k

Sem()= Y ¥m(f(x))

X1yeeesXnEKm



Exponential sums

f € k[x1,...,x,] of degree d
Sp(f)= D (f(x)
X1y, XnEK

Fix an algebraic closure k — k
km/k the extension of degree m of k in k

Sem()= Y ¥m(f(x))

X1yeeesXnEKm

¥m(t) = ¢(Tracey,, /i (t))
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The L-function

L. f.T)=exp 1”’ Drm ety T

m>1

Grothendieck: L(¢,f, T) € Q((p)(T), in fact

L(x, f,T) H py(T)D

with P{(T) € 14 TZ[¢)[T]

Deligne:
d;

P(T)=]](1 —aiyT)

j=1
where «; j is an algebraic integer, pure of integer weight w;; < i:

i j| < g/
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The L-function

2n d;
Sy,m(f) = Z(*l)i Z osz
i=n j=1

In particular,
1Sp(F)] < (dn + - - - + day)gm@{is/2}

Need to estimate:
> the weights w; ;

> the degrees d;



Known results
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Known results

Deligne (Weil 1): If ged(d, p) = 1 and the highest degree form of f
is non-singular, then d; =0 for i > n, d, = (d — 1)" and w,; = n,
S0

|Su(F)| < (d —1)"q"?

Katz: If gcd(d, p) = 1 and the highest degree form of f has
singular locus of dimension € > 0, then d; =0fori > n+1+¢, so

’S¢(f)| < Dq(n+e+1)/2



Main result

Let f = fy + fg + h with f; homogeneous of degree d, fy
homogeneous of degree d’ < d and h of degree < d’, and
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normal crossings in P"~! and gcd(p, dd’ay ---a,) = 1. Then
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Main result

Let f = fy + fg + h with f; homogeneous of degree d, fy
homogeneous of degree d’ < d and h of degree < d’, and

fa = gt -+ - g?r, deg(gi) = e such that fyfy defines a divisor with
normal crossings in P"~! and gcd(p, dd’ay ---a,) = 1. Then

» di=0fori>n
» d,=C(d,d',r,er,...,e)
> wpj=nforall j=1,...,d,

In particular,

[Su(F)l < C(d.d'r,en,... e)q"?
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Xe = {(x,t)|t —t7 = f(x)} — A" x Al — A"
is a finite Galois cover with Galois group k so gives a quotient map
m1(A") - k — C* = Q)

ie. a rank one smooth /¢-adic sheaf £¢ on A" Every k-rational
point x € k" gives

71(Spec(k(x))) — m1(A")

so we get an element F, € 71(A"), well defined up to conjugation,
on which the character L takes the value 1(f(x)).
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On the other hand, we have cohomology groups
H (A", Ly)

vanishing for i < n and i > 2n, on which Gal(k/k) acts.
Grothendieck’s trace formula:

2n
> W(F(x)) =Y (—1) Trace(F|HI(A", Lf))
xEkn i=n

This formally implies

2n
L, f, T) = [J(1 — T det(FIHI(A", L))"

i=n

i+1
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Families of exponential sums

The idea of Deligne's proof is to embed the sum Sy (f) in a larger
family

‘P = affine space parameterizing all polynomials of degree < d.

U C P open subset parameterizing all polynomials such that f; is
smooth.

Then the HL(A", L¢) vary smoothly on U, in particular the d;'s
and the W{Js are constant.

> vd 4+ = (D) (O (s

X1,.--,Xn €K x1€k Xn€Ek

so the result follows from Weil's
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Families of exponential sums

In our case:

‘P; = affine space parameterizing all homogeneous polynomials of
degree ¢;

P = affine space parameterizing all polynomials of degree < d’

U CP1 x---xP, x P open subset parameterizing all

(r + 1)-tuples (g1, ..., &, h) such that gi* --- g + h is "good”
The fact that gy - - - gefy defines a divisor with normal crossings
implies that the H.(A", L¢) vary smoothly on U, in particular the

d;'s and the W,-’Js are constant.
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The Fourier transform

It is an autoequivalence of the derived category of ¢-adic sheaves
on A",
On the trace level, it corresponds to the usual Fourier transform
(up to sign):
F.k"—C
F(t) =Y F()u(t-x)
XEKN
For instance, the Fourier transform of the sheaf £¢ has Frobenius
trace at t
D> e(F(x) +t-x)
xekn
and in fact it is the restriction to a linear subspace of U of the
complex parameterizing the cohomology of the sums!
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know that the cohomology sheaves vary smoothly, we deduce that
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The Fourier transform

Since the Fourier transform raises weights by n and we already
know that the cohomology sheaves vary smoothly, we deduce that
HL(A", L) is pure of weight i: w;;j = i for all i.

But the fact that Ly is a single sheaf does not imply the same
thing for the Fourier transform.
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Perverse sheaves

An object K in the derived category of f-adic sheaves on A" is
semiperverse if the i-th cohomology sheaf has support in dimension
< —i. For instance: any sheaf F placed on degree —n.

Fourier transform preserves semiperversity!

Since the cohomology groups vary smoothly, their dimension can't
jump up, so HL(A", L) =0 for i > n.
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About the rank

The sheaf L¢ placed on degree —n is actually perverse: its Verdier
dual is also semiperverse.

Since the Fourier transform preserves perversity, the complex
parameterizing H.(A", L¢) is also perverse.

In particular, its rank can only decrease under specialization. So if
f degenerates to g, dim(A", L¢) > dim(A", L,).
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About the rank

Least degenerate case: fy nonsingular: C < (d —1)"
Most degenerate case: fy = g9 with g linear.

Using:
Sl + 5+ xI) = O v X)) (O ()
xekn x1€k xn€Ek

we get the lower bound C > d(d’ — 1)1 Not good for the
Kloosterman case!



Formula for the rank

dp=(-1)"+ Gl el G (—1)"(d — d')x

d/
where
= > (D)ixn-Lie)- > (1) x(n—1;d )
IC{1,..., r} 1C{1,...,r}
1<\/|<n 1<[1|<n—2

and e stands for e, ..., e if [ ={n,..., i}



Two dimensional case

f="»g+ o+ hekx,y]
with fy squarefree and gcd(fy, fy) = 1, then

> U(fy)| <A +d(d —2)+r(d—d))q

(x,y)€k?



