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Two classical results.

Theorem[Mordell]

The group of rational points on an elliptic

curve is finitely generated.
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Two classical results.

Theorem[Mordell]

The group of rational points on an elliptic

curve is finitely generated.

Theorem[Siegel 1929]

The set of integral points on an elliptic curve

is finite.



Generalizations

Theorem[Mahler 1934]

Given any elliptic curve E in Weierstrass form,

for P ∈ E(Q), let

x(P ) = AP/B2
P

as usual. Fix any finite set S of primes then

only finitely many points P ∈ E(Q) have BP

divisible only by the primes in the set S.
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Generalizations

Theorem[Mahler 1934]

Given any elliptic curve E in Weierstrass form,

for P ∈ E(Q), let

x(P ) = AP/B2
P

as usual. Fix any finite set S of primes then

only finitely many points P ∈ E(Q) have BP

divisible only by the primes in the set S.

Rationals whose denominators are formed by

primes from a set S are called S-integral.

Thus Mahler’s Theorem says there are only

finitely many S-integral points on an elliptic

curve.



Theorem[Silverman 1986]

Given any infinite set of rational points on an

elliptic curve in Weierstrass form. Let

x(P ) = AP/B2
P

as usual. Then

log |AP |
2 logBP

→ 1,

as ĥ(P ) →∞.

4



2. PRIMALITY
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1. Elliptic Curves in Homogeneous Form

Suppose E denotes an elliptic curve defined

by an equation

ED : X3 + Y 3 = D,

for some non-zero, cube-free D ∈ Q. For a

rational point on P ∈ E(Q), write

X(P ) =
AP

BP

with AP , BP (> 0) ∈ Z, in lowest terms.

6



Theorem[GE+Miller+Stephens Proc. AMS

2004]

Suppose E denotes an elliptic curve defined

by an equation

ED : X3 + Y 3 = D,

for some non-zero, cube-free D ∈ Q. There

are only finitely many points P ∈ E(Q) for

which the integer BP is a prime (power).
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Theorem[GE+Miller+Stephens Proc. AMS

2004]

Suppose E denotes an elliptic curve defined

by an equation

ED : X3 + Y 3 = D,

for some non-zero, cube-free D ∈ Q. There

are only finitely many points P ∈ E(Q) for

which the integer BP is a prime (power).

Note This is not uniform but it is a state-

ment about all rational points - not just the

multiples of a single rational point.



Example The taxi-cab equation

E1729 : X3 + Y 3 = 1729,

has two distinct integral solutions. These

give rise to points P = [1,12] and Q = [9,10]

on the elliptic curve. The only rational points

which seem to yield prime power denomina-

tors are 2Q and P + Q (and their inverses).
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Proof

The proof follows easily using the bi-rational

transformation we used before as well as Sil-

verman’s generalization of Siegel’s Theorem.

We showed that if

P ′ =
(

A′P
B′2P

,
C′P
B′3P

)
∈ E′D,

with gcd(A′P , B′P ) = 1, then

X(nP ) =
36DB′3P + C′P

6A′PB′P
.
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Proof

The proof follows easily using the bi-rational

transformation we used before as well as Sil-

verman’s generalization of Siegel’s Theorem.

We showed that if

P ′ =
(

A′P
B′2P

,
C′P
B′3P

)
∈ E′D,

with gcd(A′P , B′P ) = 1, then

X(nP ) =
36DB′3P + C′P

6A′PB′P
.

Any cancellation between numerator and de-

nominator divides 6D hence it is bounded.

By Silverman’s Theorem,

|A′P | and B′P →∞ as ĥ(P ′) →∞.



Proof

The proof follows easily using the bi-rational

transformation we used before as well as Sil-

verman’s generalization of Siegel’s Theorem.

We showed that if

P ′ =
(

A′P
B′2P

,
C′P
B′3P

)
∈ E′D,

with gcd(A′P , B′P ) = 1, then

X(nP ) =
36DB′3P + C′P

6A′PB′P
.

Any cancellation between numerator and de-

nominator divides 6D hence it is bounded.

By Silverman’s Theorem,

|A′P | and B′P →∞ as ĥ(P ′) →∞.

Hence the denominator of x(P ) is divisible by

two distinct primes with only finitely many

exceptions.



2. Elliptic Curves in Weierstrass Form

Let E denote an elliptic curve in Weierstrass

form:

y2 + a1xy + a3y = x3 + a2x3 + a4x + a6,

where a1, . . . , a6 ∈ Z and ∆E 6= 0.
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Let P ∈ E(Q) denote a rational point on E.

Write

x(P ) =
AP

B2
P

with AP , BP (> 0) ∈ Z, in lowest terms.
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Isogenies

An isogeny is a homomorphism between two

elliptic curves which is given by rational func-

tions. The degree of the isogeny is the de-

gree of the rational functions.
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Isogenies

An isogeny is a homomorphism between two

elliptic curves which is given by rational func-

tions. The degree of the isogeny is the de-

gree of the rational functions.

ExampleThe multiplication by m map on an

elliptic curve which sends P to mP is an

isogeny of degree m2.



Factorizing Multiplication

More importantly, the ×m map factorizes as

a composite of two degree-m isogenies:

φ : E → E′ and φ∗ : E′ → E.

So the picture is

E → E′ → E with φ∗φ(P ) = mP.

13



Factorizing Multiplication

More importantly, the ×m map factorizes as

a composite of two degree-m isogenies:

φ : E → E′ and φ∗ : E′ → E.

So the picture is

E → E′ → E with φ∗φ(P ) = mP.

The map φ∗ is called the dual of φ.



The Richelot Isogeny

Suppose E denotes an elliptic curve in the

form

E : y2 = x3 + ax2 + bx,

where a, b ∈ Q. The point [0,0] is a 2-torsion

point.
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The Richelot Isogeny

Suppose E denotes an elliptic curve in the

form

E : y2 = x3 + ax2 + bx,

where a, b ∈ Q. The point [0,0] is a 2-torsion

point.

Consider also the curve E′ defined the equa-

tion

Y 2 = X3 − 2aX2 + (a2 − 4b)X.



The Richelot Isogeny

Suppose E denotes an elliptic curve in the

form

E : y2 = x3 + ax2 + bx,

where a, b ∈ Q. The point [0,0] is a 2-torsion

point.

Consider also the curve E′ defined the equa-

tion

Y 2 = X3 − 2aX2 + (a2 − 4b)X.

The map

φ(x, y) = (X, Y ) with X =
y2

x2

is a 2-isogeny between E and E′. A rational

point lies in the image of such an isogeny if

and only if it is a rational square.



Example 1

Let a = 0 and b = −25 then the image is the

curve

Y 2 = X3 + 100X.

The point [−4,6] maps to
[
9
4, 41

8

]
.
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Example 1

Let a = 0 and b = −25 then the image is the

curve

Y 2 = X3 + 100X.

The point [−4,6] maps to
[
9
4, 41

8

]
.

Note that the x-coordinate of the image is a

square.



For an elliptic curve

y2 = x3 − T2x,

the rational point P lies is the image of ra-

tional point under a 2-isogeny if and only if

x(P ) or x(P )± T is a rational square.
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For an elliptic curve

y2 = x3 − T2x,

the rational point P lies is the image of ra-

tional point under a 2-isogeny if and only if

x(P ) or x(P )± T is a rational square.

Example 2

When T = 5 (yesterday) and P = [−4,6].



Theorem[GE+Stephens+Miller+King]

Suppose B = (Bn) is an EDS coming from

an elliptic curve E and P ∈ E(Q). If P is

the image of an algebraic point P ′ under a

non-trivial isogeny and

[Q(P ′) : Q] < deg(σ),

with Q(P ′)/Q Galois, then only finitely many

terms Bn are prime (powers).
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Theorem[GE+Stephens+Miller+King]

Suppose B = (Bn) is an EDS coming from

an elliptic curve E and P ∈ E(Q). If P is

the image of an algebraic point P ′ under a

non-trivial isogeny and

[Q(P ′) : Q] < deg(σ),

with Q(P ′)/Q Galois, then only finitely many

terms Bn are prime (powers).

For example the theorem applies if P ′ is a

rational point. There are many examples.



Example 1 E : y2 = x3 − 25x, P = [−4,6]

There is a non-trivial isogeny mapping a ra-

tional point onto P .
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Example 1 E : y2 = x3 − 25x, P = [−4,6]

There is a non-trivial isogeny mapping a ra-

tional point onto P .

n Factors of Bn

1 1
2 22.3
3 37.61
4 23.3.72.31.41
5 5.13.17.761.10601
6 22.32.11.37.61.71.587.4799
7 197.421.215153.3498052153
8 24.3.72.31.41.113279.3344161.4728001
9 37.61.26209.14764833973.1147163247400141



Note

When a point satisfies the condition of the

theorem it is said to be magnified from P ′
(because the height increases).
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Note

When a point satisfies the condition of the

theorem it is said to be magnified from P ′
(because the height increases).

By generalizing this to number fields, there

are examples of chains of points, with each

point magnified from the previous one. When

this happens stronger statements can be proved

about the divisibility of the terms in the EDS.



Example

Consider the elliptic curve

E : y2 = x3 − x2 − 4x− 2.

The point P = [3,2] lies on E.
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Example

Consider the elliptic curve

E : y2 = x3 − x2 − 4x− 2.

The point P = [3,2] lies on E.

Let

a2 − 4a− 4 = 0

then either point Q with x(Q) = a satisfies

2Q = P .



Example

Consider the elliptic curve

E : y2 = x3 − x2 − 4x− 2.

The point P = [3,2] lies on E.

Let

a2 − 4a− 4 = 0

then either point Q with x(Q) = a satisfies

2Q = P .

Thus P is magnified from Q because the

isogeny has degree 4 whereas the extension

is quadratic (hence Galois).



Example continued

Now let b4 − 16b3 − 24b2 − 16b − 8 = 0 then

either point R with x(R) = b satisfies 2R = Q

hence Q is itself magnified from R.
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Example continued

Now let b4 − 16b3 − 24b2 − 16b − 8 = 0 then

either point R with x(R) = b satisfies 2R = Q

hence Q is itself magnified from R.

Results of GE+King (2005) show the equa-

tion

Bn = peqf

with p and q distinct primes has only finitely

many solutions. In other words, only finitely

many terms in the EDS are divisible by at

most two distinct prime factors.



Comment

If the elliptic Lehmer problem has an affirma-

tive answer then there are algebraic points

which cannot be magnified.
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Comment

If the elliptic Lehmer problem has an affirma-

tive answer then there are algebraic points

which cannot be magnified.

Reason: Every time a point is magnified, the

quantity

ĥ(P )

[Q(P ) : Q]

goes down by a factor at least 2. The ELP

asks if this quantity is uniformly bounded be-

low by a positive constant.



Stronger Conjecture

Given an elliptic curve in Weierstrass form

and a non-torsion rational point, let B =

(Bn) denote the corresponding EDS. Given

any t, there is N0 such that for all n > N0,

Bn has more than t distinct prime factors.
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Comments - positive

1. If the stronger conjecture is true, an EDS

is the anti-thesis of a sequence such as Mersenne.
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Comments - positive

1. If the stronger conjecture is true, an EDS

is the anti-thesis of a sequence such as Mersenne.

2. It might even be true that for all large n,

Bn has more than t distinct primitive prime

factors.



Comments - positive

1. If the stronger conjecture is true, an EDS

is the anti-thesis of a sequence such as Mersenne.

2. It might even be true that for all large n,

Bn has more than t distinct primitive prime

factors.

3. If the curve is in minimal form, perhaps it

will be true that N0 depends on t only.



Comments - negative

1. Although the theorem above resolves the

primality conjecture in some cases, the hy-

pothesis is quite strong, and can hold even

in higher rank. Thus it a theorem about the

structure of rational points in the image of

an isogeny.
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Comments - negative

1. Although the theorem above resolves the

primality conjecture in some cases, the hy-

pothesis is quite strong, and can hold even

in higher rank. Thus it a theorem about the

structure of rational points in the image of

an isogeny.

2. When the rank is greater than 1, and

there is no such isogeny, we expect there will

indeed be infinitely many prime square de-

nominators.



Comments - negative

1. Although the theorem above resolves the

primality conjecture in some cases, the hy-

pothesis is quite strong, and can hold even

in higher rank. Thus it a theorem about the

structure of rational points in the image of

an isogeny.

2. When the rank is greater than 1, and

there is no such isogeny, we expect there will

indeed be infinitely many prime square de-

nominators.

3. We have not yet found method of proof

that is sensitive to our set of rational points

being the multiples of a single point.



The theorem that follows generalizes the one

stated which was stated earlier for EDSs. It

is a theorem about rational points lying inside

the image of an isogeny.
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Definition We say a subset G ⊂ E(Q) is

magnified if it lies in the image of a set G′ of

algebraic points under a non-trivial isogeny

and

[Q(G′) : Q] < deg(σ),

with Q(G′)/Q Galois.
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Theorem[GE+Reynolds+Stevens]

Suppose σ : E′ → E denotes a non-trivial

isogeny defined over Q. Let G denote a mag-

nified subset of E(Q) lying in Im(σ). Writing

x(P ) = AP/B2
P

for P ∈ G:
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Theorem[GE+Reynolds+Stevens]

Suppose σ : E′ → E denotes a non-trivial

isogeny defined over Q. Let G denote a mag-

nified subset of E(Q) lying in Im(σ). Writing

x(P ) = AP/B2
P

for P ∈ G:

(i) Only finitely many BP are primes.



Theorem[GE+Reynolds+Stevens]

Suppose σ : E′ → E denotes a non-trivial

isogeny defined over Q. Let G denote a mag-

nified subset of E(Q) lying in Im(σ). Writing

x(P ) = AP/B2
P

for P ∈ G:

(i) Only finitely many BP are primes.

(ii) The number of prime terms is bounded

above in the form

cω(∆E)(rG+1)

where c depends on deg(σ), rG denotes the

rank of G and ω(n) denotes the number of

distinct prime factors of n.



Theorem[GE+Reynolds+Stevens]

Suppose σ : E′ → E denotes a non-trivial

isogeny defined over Q. Let G denote a mag-

nified subset of E(Q) lying in Im(σ). Writing

x(P ) = AP/B2
P

for P ∈ G:

(i) Only finitely many BP are primes.

(ii) The number of prime terms is bounded

above in the form

cω(∆E)(rG+1)

where c depends on deg(σ), rG denotes the

rank of G and ω(n) denotes the number of

distinct prime factors of n.

(iii) The exceptions are effectively computable.



Proof Easy case: G′ consists of rational points.

(a) Finiteness: Write

T ′ ∈ ker(σ) and σ(P ′) = P.

Then T ′ is a torsion point of order dividing

deg(σ). Now P ′ + T ′ and P ′ both map to P

under σ. However the gcd of the denomina-

tors divides the degree of σ.
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(i) Let S consist of the primes dividing deg(σ)

as well as the bad reduction primes.
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(i) Let S consist of the primes dividing deg(σ)

as well as the bad reduction primes.

Provided each of P ′ and P ′ + T ′ is not

an S-integral point their denominators must

include distinct primes. Hence the denomi-

nator of P is divisible by at least two distinct

primes.



(i) Let S consist of the primes dividing deg(σ)

as well as the bad reduction primes.

Provided each of P ′ and P ′ + T ′ is not

an S-integral point their denominators must

include distinct primes. Hence the denomi-

nator of P is divisible by at least two distinct

primes.

There are only finitely many S-integral points

by Mahler’s Theorem.



(ii) The explicit bound follows from a Theo-

rem of Silverman and Gross, which gives an

explicit bound for the number of S-integral

points on an elliptic curve.
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Proof

(iii) Effectiveness: follows using elliptic tran-

scendence theory, some local height analysis

as well as the functoriality of the height under

isogeny.
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Proof

(iii) Effectiveness: follows using elliptic tran-

scendence theory, some local height analysis

as well as the functoriality of the height under

isogeny.

If σ(P ′) = P then

ĥ(P ) = deg(σ)ĥ(P ′).

The rational points on G are finitely gener-

ated. Writing

x(n1P1 + · · ·+ nrPr) =
An

B2
n
.



Proof

(iii) Effectiveness: follows using elliptic tran-

scendence theory, some local height analysis

as well as the functoriality of the height under

isogeny.

If σ(P ′) = P then

ĥ(P ) = deg(σ)ĥ(P ′).

The rational points on G are finitely gener-

ated. Writing

x(n1P1 + · · ·+ nrPr) =
An

B2
n
.

Also, using the same kind of argument as

before,

ĥ(n1P1 + · · ·+ nrPr) = Q(n) ∼ logB2
n,

for some positive-definite quadratic form.



Note Use of elliptic transcendence means ef-

fectiveness is moral rather than practical. How-

ever in some cases, very tight bounds can be

found.
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Example (Jonathan Reynolds)

For every integer T > 1 consider the elliptic

curve

y2 = (x + 1)(x− T2)(x− T4)

together with the EDS generated by the point

P = (0, T3).

For all T > 1 and all n > 2 the denominator

of x(nP ) is divisible by at least two distinct

primes.
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Notes on Example

1. This is a parametrised family of curves

with a 2-isogeny.
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Notes on Example

1. This is a parametrised family of curves

with a 2-isogeny.

2. When T is a power of 2, so is B2.



3. Perfect Powers
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Theorem[GE+Reynolds+Stevens]

Let E denote an elliptic curve in Weierstrass

form. For any fixed power f > 1, there are

only finitely many P as above for which BP

is an f-power.
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Remarks

1. This theorem is a generalization of Siegel’s

Theorem that an elliptic curve has only finitely

integral points (take BP = 1 = 1f).
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Remarks

1. This theorem is a generalization of Siegel’s

Theorem that an elliptic curve has only finitely

integral points (take BP = 1 = 1f).

2. Our proof actually shows that for a fixed

S, only finitely many points P have BP equal

to an S-integer times an f-power.



Remarks

1. This theorem is a generalization of Siegel’s

Theorem that an elliptic curve has only finitely

integral points (take BP = 1 = 1f).

2. Our proof actually shows that for a fixed

S, only finitely many points P have BP equal

to an S-integer times an f-power.

3. Assuming the ABC-conjecture for num-

ber fields, for all sufficiently large f there are

no rational points P with BP equal to an f-

power.



Example The elliptic curve

E : y2 = x3 − 2

has E(Q) ' Z with generator P = [3,±5].

Perhaps these two points yield the only per-

fect power values (BP = 1).
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The Toolkit

(I) Faltings’ Theorem is invoked at a critical

stage.
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The Toolkit

(I) Faltings’ Theorem is invoked at a critical

stage.

(II) The proof is based upon one of the proofs

of the theorem about S-integral points, the

one which reduces the problem to solving a

finite set of S-unit equations.



The genus

Suppose F (X, Y, Z) = 0 defines a projective

curve of degree d > 1. If the curve is non-

singular, the genus of the curve is defined to

be

(d− 1)(d− 2)

2
.
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The genus

Suppose F (X, Y, Z) = 0 defines a projective

curve of degree d > 1. If the curve is non-

singular, the genus of the curve is defined to

be

(d− 1)(d− 2)

2
.

For example, an elliptic curve is a non-singular

cubic curve of genus

(3− 1)(3− 2)

2
= 1.



(I) Faltings’ Theorem

A deep theorem of Faltings says that if C

is a curve, defined over a number field K,

and the genus of the curve is greater than 1,

then the curve will contain only finitely many

K-rational points.
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(I) Faltings’ Theorem

A deep theorem of Faltings says that if C

is a curve, defined over a number field K,

and the genus of the curve is greater than 1,

then the curve will contain only finitely many

K-rational points.

Example As soon as d > 2, the equation

axd + byd = c,

with a, b, c ∈ K, abc 6= 0, has only finitely many

solutions x, y ∈ K.



Remark Using results of Farhi it is possible,

in principle, to give an explicit upper bound

for the number of rational points P with BP

equal to an f-power.
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Remark Using results of Farhi it is possible,

in principle, to give an explicit upper bound

for the number of rational points P with BP

equal to an f-power.

This bound will depend upon E and f as well

as the maximal K-rank of a finite number of

Abelian varieties.



Remark Using results of Farhi it is possible,

in principle, to give an explicit upper bound

for the number of rational points P with BP

equal to an f-power.

This bound will depend upon E and f as well

as the maximal K-rank of a finite number of

Abelian varieties.

The dependence upon E arises as the max-

imal näıve height of the identity elements

on these varietes; hence it manifests as the

height of a very complicated rational number

which is a rational function in the coordinates

of the curve.



(II) Valuations and S-units

Let K be a field extension of Q of finite de-

gree.
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(II) Valuations and S-units

Let K be a field extension of Q of finite de-

gree.

The absolute values on K, written MK, con-

sist of the usual archimedean absolute values

together with the non-archimedean, ℘-adic

absolute values, one for each prime ideal ℘

of K.



(II) Valuations and S-units

Let K be a field extension of Q of finite de-

gree.

The absolute values on K, written MK, con-

sist of the usual archimedean absolute values

together with the non-archimedean, ℘-adic

absolute values, one for each prime ideal ℘

of K.

Write Kv for the completion of K with re-

spect to v.



Notation

It is often more convenient to work with the

valuation rather than the absolute value. Thus,

if |.|v is an absolute value, the valuation is

v(.) = − log |.|v.
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Notation

It is often more convenient to work with the

valuation rather than the absolute value. Thus,

if |.|v is an absolute value, the valuation is

v(.) = − log |.|v.

Example If K = Q and p denotes a prime

then v corresponds to a p-adic absolute value |.|p,
and for x ∈ Qp,

v(x) ≥ 0 if and only if x ∈ Zp.



Let S ⊂ MK denote a finite set of valuations

containing the archimedean valuations. The

ring OS of S-integers is given by

OS = {x ∈ K : ν(x) ≥ 0 for all ν ∈ MK, ν /∈ S}
and the unit group O∗S of OS is given by

O∗S = {x ∈ K : ν(x) = 0 for all ν ∈ MK, ν /∈ S}.
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Thus the S-integers OS are all the elements

of the field which are ℘-integral for all prime

ideals outside of S.
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Thus the S-integers OS are all the elements

of the field which are ℘-integral for all prime

ideals outside of S.

The S-units are the invertible elements of OS;

all the field elements with numerator and de-

nominator consisting of primes in S.



Examples

1. Let K = Q and take S = {|.|}. The ring

of S-integers is Z. The group of S-units is

{±1}.
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Examples

1. Let K = Q and take S = {|.|}. The ring

of S-integers is Z. The group of S-units is

{±1}.

2. Let K = Q and take S = {|.|, |.|2}. The

ring of S-integers is

ZS =
{

a

2r
: a ∈ Z, r ∈ N

}
.

The group of S-units is

Z∗S = {±2r : r ∈ Z}.



Two Classical Theorems about S-units.

Theorem[Dirichlet’s Theorem for S-units.]

The group of S-units is finitely generated.
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Two Classical Theorems about S-units.

Theorem[Dirichlet’s Theorem for S-units.]

The group of S-units is finitely generated.

Theorem[Siegel] For any a, b ∈ K∗, the equa-

tion

au + bv = 1

has only finitely many solutions u, v in S-

units.



Here again is the theorem we will prove.

Theorem

Let E denote an elliptic curve in Weierstrass

form. For any fixed power f > 1, there are

only finitely many P as above for which BP

is an f-power.
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Proof of the Theorem

Completing the square in the Weierstrass equa-

tion, it is sufficient to consider an equation

y2 = x3 + a2x2 + a4x + a6 (1)

where x3+a2x2+a4x+a6 ∈ Q[x] has distinct

zeros α1, α2, α3 in some finite extension K of

Q.
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Proof of the Theorem

Completing the square in the Weierstrass equa-

tion, it is sufficient to consider an equation

y2 = x3 + a2x2 + a4x + a6 (1)

where x3+a2x2+a4x+a6 ∈ Q[x] has distinct

zeros α1, α2, α3 in some finite extension K of

Q.

Of course we might have introduced powers

of 2 into the denominators in (1); we will see

that this does not matter.



Let P = (x/q2, y/q3) be a solution to (1) with

x, y ∈ Q ∩ OS, q = mf and gcd(xy, q) = 1.

We will show that, for fixed f > 1, there are

finitely many choices for P .
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Let P = (x/q2, y/q3) be a solution to (1) with

x, y ∈ Q ∩ OS, q = mf and gcd(xy, q) = 1.

We will show that, for fixed f > 1, there are

finitely many choices for P .

By factorising the cubic and multipling through

by q6, from (1) we obtain

y2 = (x− q2α1)(x− q2α2)(x− q2α3). (2)



Let S be a sufficiently large (finite) subset of

MK so that OS is a PID and 2, αi − αj ∈ O∗S
for all i 6= j.
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Let S be a sufficiently large (finite) subset of

MK so that OS is a PID and 2, αi − αj ∈ O∗S
for all i 6= j.

Now let L/K be the extension of K obtained

by adjoining to K the square root of every

element of O∗S.

Note that L/K is a finite extension, since

O∗S/(O∗S)2 is finite from Dirichlet’s S-unit the-

orem.

Further let T ⊂ ML be a finite set containing

the absolute values of L lying over elements

of S and such that OT is a PID where, by

abuse of notation, OT denotes the ring of

T -integers in L.



Let ℘ be a prime ideal of OS dividing x−q2αi;

then ℘ cannot divide q, since (x, q) = 1.
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Let ℘ be a prime ideal of OS dividing x−q2αi;

then ℘ cannot divide q, since (x, q) = 1.

Hence ℘ can divide at most one term x−q2αi,

since if it divides both x − αiq
2 and x − αjq

2

then it divides also (αi − αj)q
2.

From (2) it follows that there are elements

zi ∈ OS and units bi ∈ O∗S so that

x− αiq
2 = biz

2
i .



We have bi = β2
i , for some βi ∈ OT so

x− αiq
2 = (βizi)

2. (3)
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We have bi = β2
i , for some βi ∈ OT so

x− αiq
2 = (βizi)

2. (3)

Taking the difference of any two of these

equations yields

(αj − αi)q
2 = (βizi − βjzj)(βizi + βjzj).

Note that αj −αi ∈ O∗T while each of the two

factors on the right is in OT . It follows that

each of these factors is made from primes

π|m in OT .

Further we may assume these factors are co-

prime, since if π|m divides 2βizi then from (3)

π divides x.



Siegel’s identity is the following:

β1z1 ± β2z2
β1z1 − β3z3

∓ β2z2 ± β3z3
β1z1 − β3z3

= 1.
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Siegel’s identity is the following:

β1z1 ± β2z2
β1z1 − β3z3

∓ β2z2 ± β3z3
β1z1 − β3z3

= 1.

This gives

a2f
m u + b2f

m v = c2f
m (4)

for T -units u and v where am, bm, cm ∈ OT

divide m and are pairwise coprime.



Note that the group O∗T/(O∗T )2f is finite so

we fix once and for all a set of coset repre-

sentatives.
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Note that the group O∗T/(O∗T )2f is finite so

we fix once and for all a set of coset repre-

sentatives.

Then (4) gives us a solution of an equation:

ux2f + vy2f = 1, x, y ∈ L,

with 2f ≥ 4, where u and v belong to this

finite set of representatives, which depends

only upon T and f .

Each such curve has genus

(2f − 1)(f − 1) ≥ 3.

Faltings’ Theorem guarantees there are only

finitely many solutions.



Hence, since f is fixed, there are finitely many

choices for

β1z1 + β2z2
β1z1 − β3z3

and
β1z1 − β2z2
β1z1 − β3z3

.
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Hence, since f is fixed, there are finitely many

choices for

β1z1 + β2z2
β1z1 − β3z3

and
β1z1 − β2z2
β1z1 − β3z3

.

Multiplying these two numbers, there are finitely

many choices for

(α1 − α2)q
2

(β1z1 − β3z3)2
,

hence finitely many for

q

β1z1 − β3z3
.

But

β1z1
q

=
1

2

[
β1z1 − β3z3

q
+

(α3 − α1)q

β1z1 − β3z3

]

so from (3) there are finitely many choices

for x(P ). For each choice of x(P ) there are

at most two choices for y(P ).


