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Two classical divisibility sequences:

(F ) 1,1,2,3,5,8,13,21,34,55,89,144,. . .
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Two classical divisibility sequences:

(F ) 1,1,2,3,5,8,13,21,34,55,89,144,. . .

Fn+2 = Fn+1 + Fn

(M) 1,3,7,15,31,63,127,255,. . .

Mn = 2n − 1



1. PRIME TERMS

Question

How many prime terms are there?
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Probably both sequences have infinitely many

prime terms.
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Probably both sequences have infinitely many

prime terms.

A proof seems beyond reach at the moment.



Probably both sequences have infinitely many

prime terms.

A proof seems beyond reach at the moment.

However Mersenne and Fibonacci do produce

primes in a less restrictive sense.



2. PRIMITIVE DIVISORS
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Definition

A nonzero term Bn in an integral sequence

B = (Bn) has a primitive divisor d > 1 if:

(I) d|Bn

(II) gcd(Bm, d)=1 for all m < n with Bm 6= 0.
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All Fibonacci numbers have a primitive divi-

sor after F12 = 144 (Carmichael 1914).
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All Fibonacci numbers have a primitive divi-

sor after F12 = 144 (Carmichael 1914).

All Mersenne numbers have a primitive divi-

sor after M6 = 63 (Bang 1886).



PrimitiveDivisorsofMersenne



Primitive Divisors of Fibonacci

n Fn Factors of Fn

1 1 1
2 1 1
3 2 2
4 3 3
5 5 5
6 8 23

7 13 13
8 21 3.7
9 34 2.17
10 55 5.11
11 89 89
12 144 24.32

13 233 233
14 377 13.29
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Bang’s result applies to sequences of the form

an − 1, a > 1.
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Bang’s result applies to sequences of the form

an − 1, a > 1.

All terms after the 6th have a primitive divi-

sor.

The same result is true for sequences an− bn

with a > b > 0 (Zsigmondy 1892).

Remarkable: the bound 6 is

(a) uniform

(b) small.



Application - Group Theory

The order of some finite groups such as

GLn(Fq)

where q = pr, either as n or r grows.
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Application - Group Theory

The order of some finite groups such as

GLn(Fq)

where q = pr, either as n or r grows.

Sylow’s Theorem can be used to make pre-

dictions about subgroup structure.



A Lucas sequence U = (Un) is one given by

Un =
αn − βn

α− β

where α and β are conjugate quadratic inte-

gers. That is, roots of an irreducible quadratic

polynomial x2 + Ax + B with A, B ∈ Z.
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A Lucas sequence U = (Un) is one given by

Un =
αn − βn

α− β

where α and β are conjugate quadratic inte-

gers. That is, roots of an irreducible quadratic

polynomial x2 + Ax + B with A, B ∈ Z.

Example The Fibonacci sequence is a Lucas

sequence coming from x2 − x− 1; where

α =
1 +

√
5

2
, β =

1−√5

2
.



Theorem

[Bilu+Hanrot+Voutier Crelle 2001] All the

terms of a Lucas sequence U have a primitive

divisor after U30.
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Theorem

[Bilu+Hanrot+Voutier Crelle 2001] All the

terms of a Lucas sequence U have a primitive

divisor after U30.

This is a sharp result. The term U30 in the

sequence coming from

α =
1 +

√−7

2
, β =

1−√−7

2
does not have a primitive divisor.



Factors of some Un

n Un

6 5
10 -11
15 -89
30 −24475 = −52.11.89
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Carmichael’s paper from 1914 shows that all

Un have a primitive divisor after U12 when α

and β are real.
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Carmichael’s paper from 1914 shows that all

Un have a primitive divisor after U12 when α

and β are real.

The example of Fibonacci shows this is sharp.



Carmichael’s paper from 1914 shows that all

Un have a primitive divisor after U12 when α

and β are real.

The example of Fibonacci shows this is sharp.

General case requires very good bespoke esti-

mates from Diophantine Approximation (Baker’s

Theorem) as well as a lot of computation.



Application - Diophantine Equations

Given 0 6= D ∈ Z, BHV find all occasions

when

x2 + D = pn

has more than one solution (x2, p, n) with

x ∈ Z, p a prime and n > 1.
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3. PERFECT POWERS

18



Look again at Fibonacci:

(F ) 1,1,2,3,5,8,13,21,34,55,89,144,. . .

Question

How many perfect powers are there?
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Theorem[Bugeaud+Mignotte+Siksek Annals

2005] In the Fibonacci sequence, only the

terms underlined are perfect powers.
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Theorem[Bugeaud+Mignotte+Siksek Annals

2005] In the Fibonacci sequence, only the

terms underlined are perfect powers.

Proof uses a deep combination of sharpened

versions of classical transcendence results, ‘mod-

ular’ methods, as well as computational tech-

niques.



Elliptic Divisibility Sequences

Let E denote an elliptic curve in Weierstrass

form:

y2 + a1xy + a3y = x3 + a2x3 + a4x + a6,

where a1, . . . , a6 ∈ Z and ∆E 6= 0.
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Let P ∈ E(Q) denote a rational point on E.

Write

x(P ) =
AP

B2
P

with AP , BP (> 0) ∈ Z, in lowest terms.

22



Let

x(nP ) = An/B2
n.

Assuming P is non-torsion, the sequence

B = (Bn)

is called an Elliptic Divisibility Sequence

(hereafter EDS).
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Theorem(Silverman JNT 1988) There ex-

ists N0 such that for all n > N0, the term Bn

has a primitive divisor.
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Theorem(Silverman JNT 1988) There ex-

ists N0 such that for all n > N0, the term Bn

has a primitive divisor.

Question What is the dependence of N0 upon E

and P?



Definition

Given any integer sequence B = (Bn), if there

is a greatest index n for which Bn has no

primitive divisor, this index is called the Zsig-

mondy Bound and written n = Z(B).
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Definition

Given any integer sequence B = (Bn), if there

is a greatest index n for which Bn has no

primitive divisor, this index is called the Zsig-

mondy Bound and written n = Z(B).

Examples Z(F ) = 12 and Z(M) = 6



Conjecture

If B = (Bn) denotes an EDS coming from an

elliptic curve in minimal form then Z(B) is

uniform, independent of E and P .
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Conjecture

If B = (Bn) denotes an EDS coming from an

elliptic curve in minimal form then Z(B) is

uniform, independent of E and P .

This uniform bound might be 39.



Why minimal form?

If no assumption is made about E being in

minimal form then arbitrary many denomina-

tors can be cleared and no uniformity result

is possible.
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Proof[Proof of Silverman’s Theorem.]

The proof uses two important properties of

an EDS (Bn).

(I) For odd primes p, if p|Bn then

ordp(Bnp) = ordp(Bn) + 1.

(When p = 2 you can get +2.)
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Proof[Proof of Silverman’s Theorem.]

The proof uses two important properties of

an EDS (Bn).

(I) For odd primes p, if p|Bn then

ordp(Bnp) = ordp(Bn) + 1.

(When p = 2 you can get +2.)

(II) logBn ∼ hn2 for some h > 0 (B has

quadratic exponential growth rate).



Step 1

Assume Bn does not have a primitive divisor.

Given any p|Bn, if p|Bm with m < n then

clearly

p|Bgcd(n,m



Step 1

Assume Bn does not have a primitive divisor.

Given any p|Bn, if p|Bm with m < n then

clearly

p|Bgcd(n,m).

So we may assume m is the maximal divi-

sor n/p.

It follows from (I) that if Bn does not have

a primitive divisor then

Bn | 2n
∏

p|n
Bn

p
. (1)



Step 2

Take logs in (1):

logBn ≤ log(2n) +
∑

p|n
logBn

p
.

30



Step 2

Take logs in (1):

logBn ≤ log(2n) +
∑

p|n
logBn

p
.

Apply growth rate from (II), logBn ∼ hn2:

hn2 ≤ log(2n) + hn2 ∑

p|n

1

p2
.



Step 2

Take logs in (1):

logBn ≤ log(2n) +
∑

p|n
logBn

p
.

Apply growth rate from (II), logBn ∼ hn2:

hn2 ≤ log(2n) + hn2 ∑

p|n

1

p2
.

But
∑

p|n 1
p2 < .452 . . .



Property I

Proof is not trivial and uses p-adic arithmetic.

As motivation run through the argument in

the case of the Mersenne sequence.
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Lemma For odd primes p, ordp(Mn) > 0 im-

plies

ordp(Mnp) = ordp(Mn) + 1.

Proof Take p-adic logarithms. Or . . .
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Lemma For odd primes p, ordp(Mn) > 0 im-

plies

ordp(Mnp) = ordp(Mn) + 1.

Proof Take p-adic logarithms. Or . . .

. . . let γ denote the order of 2 modulo p.

Since p|Mn it follows that γ|n so write n = γk

for some k ∈ N. Now the p-adic expansion of

2γ begins

2γ = 1 + c1p + c2p2 + . . .



Lemma For odd primes p, ordp(Mn) > 0 im-

plies

ordp(Mnp) = ordp(Mn) + 1.

Proof Take p-adic logarithms. Or . . .

. . . let γ denote the order of 2 modulo p.

Since p|Mn it follows that γ|n so write n = γk

for some k ∈ N. Now the p-adic expansion of

2γ begins

2γ = 1 + c1p + c2p2 + . . .

Suppose cr is the first nonzero coefficient.

Then

2γk = (1 + crp
r + cr+1pr+1 . . . )k.



By the binomial theorem 2γk − 1 is

k(crp
r+cr+1pr+1 . . . )+

k(k − 1)

2
(crp

r+. . . )2 . . .
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By the binomial theorem 2γk − 1 is

k(crp
r+cr+1pr+1 . . . )+

k(k − 1)

2
(crp

r+. . . )2 . . .

By the ultra-metric inequality the lemma fol-

lows because the p-adically largest term is crkpr.



Corollary The lemma implies the strong di-

visibility property of Mersenne numbers:

gcd(Mr, Ms) = Mgcd(r,s).
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Let E1(Q) denote the subgroup of E(Q) whose

denominators are divisible by p; in other words,

all Q ∈ E(Q) with

|x(Q)|p > 1.
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Let E1(Q) denote the subgroup of E(Q) whose

denominators are divisible by p; in other words,

all Q ∈ E(Q) with

|x(Q)|p > 1.

The following lemma is the elliptic analogue

of the one above for Mersenne numbers.

Lemma If p is odd, for any O 6= Q ∈ E1(Q),

ordp(BpQ) = ordp(BQ) + 1.



Proof Take the p-adic elliptic logarithm. Or

. . .
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Proof Take the p-adic elliptic logarithm. Or

. . .

. . . assume E has the shape

y2 = x3 + Ax + B.

Let

z = x/y, w = 1/y.

Dividing the equation through by y3 and us-

ing the substitutions above turns the equa-

tion into the following

w = z3 + Azw2 + Bw3. (2)



Proof Take the p-adic elliptic logarithm. Or

. . .

. . . assume E has the shape

y2 = x3 + Ax + B.

Let

z = x/y, w = 1/y.

Dividing the equation through by y3 and us-

ing the substitutions above turns the equa-

tion into the following

w = z3 + Azw2 + Bw3. (2)

Call this new curve E′. It too is a group, with

identity [0,0].



Define

φ(x, y) = (z, w) = (x/y,1/y). (3)
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Define

φ(x, y) = (z, w) = (x/y,1/y). (3)

Lemma

The map φ : E → E′ is a group homomor-

phism.



For Q ∈ E1(Q), φ(Q) on E′ has z-coordinate

divisible by p. On the right hand side of (2)

you can keep substituting for w and you ob-

tain a power series with integer coefficients

that begins

w = z3 + · · · ∈ Z[[z]].
Our assumption that p|z guarantees that the

power series for w = w(z) converges p-adically.
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Adding points on E′

Two points P1 = (z1, w1) and P2 = (z2, w2)

on E′ are added in the usual geometric way.

The line joining the points is w = αz + β

where

α =
w1 − w2

z1 − z2
.

Using the power series for the wi we cancel

z1 − z2.
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If ordp(BP1
) = r then the corresponding z

and w have order r and 3r respectively.
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If ordp(BP1
) = r then the corresponding z

and w have order r and 3r respectively.

It follows that for P1, P2 ∈ Er(Q), α as above

must be divisible by p2r.



If ordp(BP1
) = r then the corresponding z

and w have order r and 3r respectively.

It follows that for P1, P2 ∈ Er(Q), α as above

must be divisible by p2r.

Also, β must be divisible by p3r.



Substitute equation of the line w = αz + β

into the equation of the curve to get

αz + β = z3 + Az(αz + β)2 + B(αz + β)3.

41



This equation has three roots in z and by the

sum of roots formula

z1 + z2 + z3 = −2Aαβ + 3Bα2β

1 + Aα2 + Bα3
.
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This equation has three roots in z and by the

sum of roots formula

z1 + z2 + z3 = −2Aαβ + 3Bα2β

1 + Aα2 + Bα3
.

Thus

z1 + z2 + z3

is divisible by p3r.



Assuming P1, P2 ∈ Er(Q), the result of doing

this is a congruence

z(P1 + P2) ≡ z(P1) + z(P2)modp3r. (4)

If P1 = P2 then taking the tangent instead

yields

z(2P1) ≡ 2z(P1)modp3r. (5)
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To complete the proof of the lemma apply

induction to obtain

z(nP ) ≡ nz(P )modp3r.

44



Property II: An EDS has quadratic

exponential growth rate

From the theory of heights,

logmax{|An|, |Bn|2} = 2hn2 + O(1).
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Property II: An EDS has quadratic

exponential growth rate

From the theory of heights,

logmax{|An|, |Bn|2} = 2hn2 + O(1).

So the issue is to show that

log |An| − 2 log |Bn|
does not grow too quickly. This is achieved

by bounding |x(nP )| above suitably.



Property II: An EDS has quadratic

exponential growth rate

From the theory of heights,

logmax{|An|, |Bn|2} = 2hn2 + O(1).

So the issue is to show that

log |An| − 2 log |Bn|
does not grow too quickly. This is achieved

by bounding |x(nP )| above suitably.

Use elliptic transcendence theory.



Let z correspond to P under an isomorphism

E(C) ' C/L, for some lattice L. Then as-

sume that the x-coordinate of a point is given

using the Weierstrass ℘-function,

x = ℘L(z) =
1

z2
+ c2z2 + . . .

Write {nz} for nz modulo L.

46



When the quantity |x(nP )| is large it means

nz is close to zero modulo L, thus the quanti-

ties |x(nP )| and 1/|{nz}|2 are commensurate.
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When the quantity |x(nP )| is large it means

nz is close to zero modulo L, thus the quanti-

ties |x(nP )| and 1/|{nz}|2 are commensurate.

On the complex torus, this means the elliptic

logarithm is close to zero.



When the quantity |x(nP )| is large it means

nz is close to zero modulo L, thus the quanti-

ties |x(nP )| and 1/|{nz}|2 are commensurate.

On the complex torus, this means the elliptic

logarithm is close to zero.

So it is sufficient to supply a lower bound for

{nz} and this can be given by elliptic tran-

scendence theory.



Use David’s Theorem from 1995

log |x(nP )| ¿ logn(log logn)3, (6)

where the implied constant depends upon E

and the point P .
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Use David’s Theorem from 1995

log |x(nP )| ¿ logn(log logn)3, (6)

where the implied constant depends upon E

and the point P .

Hence

logBn = hn2 + O(logn(log logn)3).



Uniformity ‘Proof’

If Bn does not have a primitive divisor then

logBn ≤ log(2n) +
∑

p|n
logBn

p
.
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Uniformity ‘Proof’

If Bn does not have a primitive divisor then

logBn ≤ log(2n) +
∑

p|n
logBn

p
.

Assume growth rate in the following form,

logBn = hn2 + O(log∆E(logn)2)

with a uniform constant. Then

.548hn2 ≤ log(2n) + O(log∆E(logn)2).



Uniformity ‘Proof’

If Bn does not have a primitive divisor then

logBn ≤ log(2n) +
∑

p|n
logBn

p
.

Assume growth rate in the following form,

logBn = hn2 + O(log∆E(logn)2)

with a uniform constant. Then

.548hn2 ≤ log(2n) + O(log∆E(logn)2).

By Lang’s conjecture log∆E ¿ h uniformly

so divide through by h to get uniform upper

bound for n.



But. . .

In David’s Theorem, the dependence of the

error term on log∆E is cubic.

50



But. . .

In David’s Theorem, the dependence of the

error term on log∆E is cubic.

Implied constant is very large.



Therefore expect uniformity results for fam-

ilies of elliptic curves where:

(a) Lang’s conjecture is provable and
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Therefore expect uniformity results for fam-

ilies of elliptic curves where:

(a) Lang’s conjecture is provable and

(b) better transcendence results are possible.



Theorem

[GE+McLaren+Ward JNT 2006]

Let E denote the elliptic curve with equation

y2 = x3 − T2x,

where T ≥ 1 is square-free (guarantees equa-

tion is minimal). Suppose B = (Bn) is an

EDS coming from P ∈ E(Q). Then,
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Theorem

[GE+McLaren+Ward JNT 2006]

Let E denote the elliptic curve with equation

y2 = x3 − T2x,

where T ≥ 1 is square-free (guarantees equa-

tion is minimal). Suppose B = (Bn) is an

EDS coming from P ∈ E(Q). Then,

(i) x(P ) < 0 implies Z(B) ≤ 10,

(ii) x(P ) = ¤ implies Z(B) ≤ 21.



This result is in line with the classical results

stated earlier for Lucas sequences.
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This result is in line with the classical results

stated earlier for Lucas sequences.

The bound is

(a) uniform

(b) small.



This result is in line with the classical results

stated earlier for Lucas sequences.

The bound is

(a) uniform

(b) small.

However it applies only to a 1-parameter fam-

ily of elliptic curves.



Note If E is a congruent number curve with

positive rank then there are always points

with x(P ) < 0 or x(P ) = ¤.
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Note If E is a congruent number curve with

positive rank then there are always points

with x(P ) < 0 or x(P ) = ¤.

If x(P ) > 0 then

x(P + [0,0]) < 0 and x(P + [−T,0]) < 0.



Note If E is a congruent number curve with

positive rank then there are always points

with x(P ) < 0 or x(P ) = ¤.

If x(P ) > 0 then

x(P + [0,0]) < 0 and x(P + [−T,0]) < 0.

For any non-torsion P , x(2P ) = ¤.



Example 1

E : y2 = x3 − 25x P = [−4,6]

n Bn

1 1
2 12
3 2257
4 1494696
5 8914433905
6 178761481355556
7 62419747600438859233
8 5354229862821602092291248
9 1001926359199672697329083442936609

Note Here you can see property (II).
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Example 1

n Factors of Bn

1 1
2 22.3
3 37.61
4 23.3.72.31.41
5 5.13.17.761.10601
6 22.32.11.37.61.71.587.4799
7 197.421.215153.3498052153
8 24.3.72.31.41.113279.3344161.4728001
9 37.61.26209.14764833973.1147163247400141

Note Here you can see property (I).
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Example 2

E : y2 = x3 − 36x P = [−3,9]

n Factors of Bn

1 1
2 2
3 37
4 22.5.7
5 13.3121
6 2.3.11.23.37.47
7 14281.140449
8 23.5.7.1151.1201.1249
9 37.2148661.31904497
10 2.13.17.19.73.97.139.239.719.3121
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Example 3

E : y2 = x3 − 49x P = [25,120]

n Factors of Bn

1 1
2 23.3.5
3 263.937
4 24.3.5.113.337.463
5 17.89.313.6481.111119
6 23.32.5.11.23.131.167.263.673.937.141793
7 7.5039.7673.40993.224558153.9347641241
8

:



Question

What is the true Zsigmondy bound for the

congruent number curves?
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Theorem [Ingram JNT to appear]

For square-free T ≥ 1, let E denote the ellip-

tic curve with equation

y2 = x3 − T2x.

Suppose B = (Bn) is an EDS coming from

P ∈ E(Q). If x(P ) < 0 or x(P ) = ¤ then

Z(B) ≤ 2.

60



How?

61



How?

Ingram reduces the cases left untouched by

our theorem to a finite set of solvable Thue

equations.



EMW paper - main ideas

Use a lower bound for logBn which is weaker

in n but stronger in logT .
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EMW paper - main ideas

Use a lower bound for logBn which is weaker

in n but stronger in logT .

n even: logBn > .75hn2 − c1 logT

n odd x(P ) < 0: logBn > hn2 − c2 logT

n odd x(P ) = ¤: logBn > .25hn2 − c3 logT

Fluke here:
∑

2-p 1/p2 < .25

Strong form of Lang’s conjecture (Bremner,

Silverman + Tzanakis):

h > .5 logT



Curves in homogeneous form

Suppose E denotes an elliptic curve defined

by an equation

ED : X3 + Y 3 = D,

for some non-zero, cube-free D ∈ Q. Let P

denote a Q-rational point. Write, in lowest

terms

P =

(
AP

BP
,
CP

BP

)
and nP =

(
An

Bn
,
Cn

Bn

)
.
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Theorem[GE+Stevens+Phuksuwan] Provided

D ∈ Q is cube-free, Z(B) ≤ 42.
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Theorem[GE+Stevens+Phuksuwan] Provided

D ∈ Q is cube-free, Z(B) ≤ 42.

Improvements are almost certainly possible.



Proof - main ideas

Use the bi-rational transformation between

the homogeneous curve ED, and the curve

in Weierstrass form

E′D : y2 = x3 − 432D2.
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Proof - main ideas

Use the bi-rational transformation between

the homogeneous curve ED, and the curve

in Weierstrass form

E′D : y2 = x3 − 432D2.

The map is given by

X =
36D + y

6x
and Y =

36D − y

6x
.



If P ′ ∈ E′D(Q) corresponds to P ∈ ED(Q) un-

der the transformation, write

nP ′ =
(

A′n
B′2n

,
C′n
B′3n

)
.

Then

X(nP ) =
36DB′3n + C′n

6A′nB′n
.
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Both A′n and B′n have primitive divisors from

some point.
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some point.

We can prove a uniform Zsigmondy bound
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Both A′n and B′n have primitive divisors from

some point.

We can prove a uniform Zsigmondy bound

Z(A′) for A′ . . .
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bound for B′).



Both A′n and B′n have primitive divisors from

some point.

We can prove a uniform Zsigmondy bound

Z(A′) for A′ . . .

. . . but we cannot prove a uniform Zsigmondy

bound for B′).

Use Jedrzejak’s explicit version of Lang’s con-

jecture for this curve.



2 PRIMALITY
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Examples

1. (Chudnovsky and Chudnovsky 1986)

E : y2 = x3 + 26, P = [−1,5]

The term B29 is a prime with 286 decimal

digits.

E : y2 = x3 + 15, P = [1,4]

The term B41 is a prime with 510 decimal

digits.
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Examples

1. (Chudnovsky and Chudnovsky 1986)

E : y2 = x3 + 26, P = [−1,5]

The term B29 is a prime with 286 decimal

digits.

E : y2 = x3 + 15, P = [1,4]

The term B41 is a prime with 510 decimal

digits.

They let n run out to 100.



2. (Bŕıd Ńı Fhlathúın 1999)

E : y2 + y = x3 − x, P = [0,0]. (7)

The term B409 is a prime with 1857 decimal

digits.
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2. (Bŕıd Ńı Fhlathúın 1999)

E : y2 + y = x3 − x, P = [0,0]. (7)

The term B409 is a prime with 1857 decimal

digits.

3. (GE 2006)

Same sequence as in (7). The term B1291 is

a prime with 18498 decimal digits.



These large primes are technically pseudo-

primes to 20 bases in the sense of the Miller-

Rabin test. Thus the probability they are

composite is less than

1

420
< .0000000000001
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These large primes are technically pseudo-

primes to 20 bases in the sense of the Miller-

Rabin test. Thus the probability they are

composite is less than

1

420
< .0000000000001

It takes PARI-GP just under 10 hours to check

B1291 on a PC. It takes MAGMA about 2

hours.



Further Calculations

In 1999, GE+Einsielder+Ward let n run out

to 500 in the Chudnovsky’s calculations. No

further prime terms appeared.
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Further Calculations

In 1999, GE+Einsielder+Ward let n run out

to 500 in the Chudnovsky’s calculations. No

further prime terms appeared.

Example (7) has only produced 14 prime terms

in total.



Conjecture

Only finitely many terms of an elliptic divis-

ibility sequence are primes. If the curve is

given in minimal form, the number of prime

terms is uniformly bounded.
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Conjecture

Only finitely many terms of an elliptic divis-

ibility sequence are primes. If the curve is

given in minimal form, the number of prime

terms is uniformly bounded.

Note Uniformly bounded means independent

of curve and point. Perhaps the bound is 32

- see later.



The Curve y2 + y = x3 − x.

n digits of Bn

5 1
7 1
8 1
9 1
11 2
12 2
13 2
19 4
23 6
29 10
83 77
101 114
409 1857
1291 18498
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Heuristic Arguments

1. Lenstra and Wagstaff on Mersenne

By the PNT, the probability that N > 1 is

prime is 1/ logN .
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Heuristic Arguments

1. Lenstra and Wagstaff on Mersenne

By the PNT, the probability that N > 1 is

prime is 1/ logN .

Does this suggest that the number of Mersenne

primes Mn with n < X is roughly

∑

n<X

1

logMn
∼ logX

log 2
? (8)



The formula in (8) does not match the evi-

dence.
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The formula in (8) does not match the evi-

dence.

Lenstra and Wagstaff refined this to argue

that the number of Mersenne primes Mn with

n < X is asymptotically

c logX

where

c = eγ/ log 2.



In other words, PNT gives the asymptotic

growth rate. Refinement using congruence

arguments gives leading constant.
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2. Application to EDSs

Arguing along the same lines suggests that

the number of prime terms Bn having n < X

is roughly
∑

n<X

1

logBn
. (9)
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Arguing along the same lines suggests that

the number of prime terms Bn having n < X

is roughly
∑

n<X

1

logBn
. (9)

Growth rate shows this sum is bounded by

1

h

∑

n<X

1

n2
<

π2

6h
.



2. Application to EDSs

Arguing along the same lines suggests that

the number of prime terms Bn having n < X

is roughly
∑

n<X

1

logBn
. (9)

Growth rate shows this sum is bounded by

1

h

∑

n<X

1

n2
<

π2

6h
.

Now h > 0 is known to be uniformly bounded

below. Hence the sum in (9) is uniformly

bounded above.



The heuristic argument suggested that if h >

0 is small then we might get more primes for

our money. . .
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Example 4

Let P denote the point [−386,−3767] on the

elliptic curve

y2 + xy = x3 − 141875x + 13893057.
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Example 4

Let P denote the point [−386,−3767] on the

elliptic curve

y2 + xy = x3 − 141875x + 13893057.

The EDS has Bn equal to a prime for at least

32 values of n. The largest known is B1811

which has 6438 decimal digits.



Noam Elkies keeps a web site with a table of

small height rational points:

www.math.harvard.edu/∼ elkies/low height.html
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Higher rank

Example

The curve

y2 = x3 − 28x + 52

has rank 2, with generators P1 = (−2,10)

and P2 = (−4,10). It seems likely that there

are infinitely many pairs n1, n2 ∈ Z for which

x(n1P1 + n2P2)

has a prime square denominator.
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Possibly there are asymptotically

ρ logT

such values with max{|n1|, |n2|} < T , where

ρ > 0 is a constant depending upon P1, P2

and E.
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Heuristic Argument

Using transcendence theory as before, the

logarithm of the denominator of

x(n1P1 + n2P2)

is roughly Q(n), some positive definite quadratic

form.
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Expected number of pairs n = (n1, n2) ∈ Z2

with |n| < X for which

x(n1P1 + n2P2)

has a prime square denominator is

∑

0<|n|<X

1

Q(n)
.
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The sum is approximately
∫

1≤|x|<X

dx

Q(x)
.
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The sum is approximately
∫

1≤|x|<X

dx

Q(x)
.

Changing the variables shows this is roughly

2π

R

∫ X

1

dt

t
∼ 2π

R
logX

where R is the determinant of the form - the

regulator of the two points P1, P2.



Computations suggest you get roughly ρ logX

primes but the constant is not the one pre-

dicted by the heuristic argument (as per Mersenne).
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Question

Do you get a greater frequency of prime terms

if the regulator is small?
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Prime Frequency |x| < 100

Curve Generators Primes Regulator
[0,0,1,-199,1092] [-13,38],[-6,45] 264 0.0360

[0,0,1,-27,56] [-3,10],[0,7] 209 0.0803

[0,0,0,-28,52] [-4,10],[-2,10] 200 0.0813

[1,-1,0,-10,16] [-2,6],[0,4] 190 0.0878

[1,-1,1,-42,105] [17,-73],[-5,15] 182 0.0887
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Prime Frequency |x| < 100

Curve Generators Primes Regulator
[0,0,1,-199,1092] [-13,38],[-6,45] 264 0.0360

[0,0,1,-27,56] [-3,10],[0,7] 209 0.0803

[0,0,0,-28,52] [-4,10],[-2,10] 200 0.0813

[1,-1,0,-10,16] [-2,6],[0,4] 190 0.0878

[1,-1,1,-42,105] [17,-73],[-5,15] 182 0.0887

Taken from a larger table made by Peter

Rogers

http://www.mth.uea.ac.uk/∼h090/2deds.htm



Prime Frequency |x| < 100

Curve Generators Primes Regulator
[1,1,0,-29,61] [-6,11],[-1,10] 155 0.1482

[1,0,1,-3,2] [0,1],[1,0] 138 0.1490

[0,1,0,-5,4] [-1,3],[0,2] 167 0.1502

[0,1,1,-2,0] [0,0],[1,0] 165 0.1525

[1,0,1,-12,14] [12,-47],[-1,5] 143 0.1578
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