Jacobians in isogeny classes of abelian surfaces over finite fields

Enric Nart

Sevilla, December 15th of 2006

Joint work with:

Everett Howe, Daniel Maisner and Christophe Ritzenthaler

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Algebraic curves of genus 2 over a finite field \mathbb{F}_q

C:
$$y^2 = 2x^6 + 3x^5 - 7$$
, C: $y^2 + y = x^3 + x^{-1}$

We are interested in the numerical data $N_n := |C(\mathbb{F}_{q^n})|$. This information is captured by the *Zeta function* of C/\mathbb{F}_q :

$$Z(C/\mathbb{F}_q, x) = \exp\left(\sum_{n \ge 1} \frac{N_n}{n} x^n\right) = \frac{1 + ax + bx^2 + qax^3 + q^2 x^4}{(1 - x)(1 - qx)}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

for some $a, b \in \mathbb{Z}$.

The whole family N_n is determined by N_1 and N_2 .

Fix $k = \mathbb{F}_q$ a finite field of characteristic *p*.

Question. What polynomials occur as the numerator of the zeta function of a projective smooth curve of genus 2 defined over \mathbb{F}_q ?

Question. For what values of (N_1, N_2) there exists a projective smooth curve *C* of genus 2 defined over \mathbb{F}_q such that $|C(\mathbb{F}_q)| = N_1$, $|C(\mathbb{F}_{q^2})| = N_2$?

For elliptic curves this question was answered by W.C. Waterhouse in his 1969 thesis.

For curves of genus 2 this question was raised by H.G. Rück in his 1990 thesis.

Jacobians enter into the game

We attach to *C* a more feasible object: its Jacobian J_C , which is an abelian surface defined over *k*.

The richer algebraic structure of abelian varieties allows a deeper understanding of these objects.

An important invariant of an abelian surface *A* over a finite field is the *Weil polynomial*, which is the characteristic polynomial of the Frobenius endomorphism

$$f_A(x) = x^4 + ax^3 + bx^2 + qax + q^2 \in \mathbb{Z}[x]$$

If A is the Jacobian of a curve C then the integers a, b are the same integers that appeared in the numerator of the zeta function of C.

- J. Tate and T. Honda in the sixties:
 - 1. $f_A(x) = f_B(x)$ iff A and B are k-isogenous
 - 2. The *p*-Newton polygon of $f_A(x)$ has three possibilities according to dim_{**F**_{*p*} A[p] = 2, 1, 0}

3. We know all polynomials that occur as $f_A(x)$ for some abelian surface A/k

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Our problem is, then, to identify the family of all Weil polynomials of Jacobians inside the well-known family of all Weil polynomials of abelian surfaces

 $\{f_{J_C}(x) \mid C/k \text{ curve of genus } 2\} \subseteq \{f_A(x) \mid A \text{ abelian surface}/k\}$

Question. What isogeny classes of abelian surfaces/k do contain a Jacobian?

Oort and Ueno proved in 1973 that all isogeny classes of abelian surfaces contain Jacobians if $k = \overline{k}$.

Thus, there is no geometric obstruction to our problem.

<i>p</i> -rank	Condition on <i>p</i> and <i>q</i>	Conditions on <i>s</i> and <i>t</i>
_		s-t =1
2	_	$s = t \text{ and } t^2 - 4q \in \{-3, -4, -7\}$
2	<i>q</i> = 2	$ s = t = 1$ and $s \neq t$
1	q square	$s^2 = 4q$ and $s - t$ squarefree
0	p > 3	$s^2 eq t^2$
0	p = 3 and q nonsquare	$s^2 = t^2 = 3q$
0	p = 3 and q square	$s-t$ is not divisible by $3\sqrt{q}$
0	p = 2	$s^2 - t^2$ is not divisible by 2q
0	<i>q</i> = 2 or <i>q</i> = 3	s = t
0	<i>q</i> = 4 or <i>q</i> = 9	$s^2 = t^2 = 4q$

Table: Conditions that ensure that the split isogeny class with Weil polynomial $(x^2 - sx + q)(x^2 - tx + q)$ does not contain a Jacobian. Here we assume that $|s| \ge |t|$.

<i>p</i> -rank	Condition on p and q	Conditions on <i>a</i> and <i>b</i>
_	_	$a^2 - b = q$ and $b < 0$ and all
		prime divisors of <i>b</i> are 1 mod 3
2	—	a = 0 and $b = 1 - 2q$
2	p > 2	a = 0 and $b = 2 - 2q$
0	$p \equiv 11 \mod 12$ and q square	a = 0 and $b = -q$
0	p = 3 and q square	a = 0 and $b = -q$
0	p = 2 and q nonsquare	a = 0 and $b = -q$
0	q = 2 or $q = 3$	a = 0 and $b = -2q$

Table: Conditions that ensure that the simple isogeny class with Weil polynomial $x^4 + ax^3 + bx^2 + aqx + q^2$ does not contain a Jacobian.

Jacobians are determined by principal polarizations

Theorem (Weil 1957). An abelian surface A/\mathbb{F}_q is not \mathbb{F}_q -isomorphic to the Jacobian of a smooth projective curve/ \mathbb{F}_q iff for all principal polarizations λ of A defined over \mathbb{F}_q

$$(\mathbf{A},\lambda)\simeq_{\mathbb{F}_{q^2}} (\mathbf{E} imes \mathbf{E}',\lambda_{\mathsf{split}})$$

as polarized surfaces.

Corollary. If A/\mathbb{F}_q is simple over \mathbb{F}_{q^2} then it is \mathbb{F}_q -isomorphic to a Jacobian iff it admits a principal polarization/ \mathbb{F}_q .

Question. What isogeny classes of abelian surfaces/k do contain a surface admitting a principal polarization/k?

We say that such isogeny class is *principally polarizable*

This (weaker) question was studied by E. Howe in a series of papers (1995,1996, 2001), where he expressed the obstruction to the existence of principal polarizations in an isogeny class \mathcal{A} of abelian varieties in terms of the vanishing of an element $I_{\mathcal{A}}$ of a group $\mathcal{B}_{\mathcal{A}}$ constructed from the Grothendieck group of the category of finite group schemes that are kernels of isogenies between two abelian varieties in \mathcal{A} .

Using class field theory the obstruction group $\mathcal{B}_{\mathcal{A}}$ and the obstruction element $I_{\mathcal{A}}$ could be described in terms of purely arithmetic data.

Theorem (HMNR 2006). Let \mathcal{A} be an isogeny class of abelian surfaces/ \mathbb{F}_q with Weil polynomial $x^4 + ax^3 + bx^2 + aqx + q^2$. Then, \mathcal{A} is not principally polarizable iff $a^2 - b = q$, b < 0 and all prime divisors of *b* are congruent to 1 mod 3.

Jacobians in isogeny classes: sketch of the methods

 \mathcal{A} simple over \mathbb{F}_{q^2} . Howe's obstruction group and element for \mathcal{A} to be principally polarizable. H95 + MN02 + HMNR06

 \mathcal{A} **split over** \mathbb{F}_q . Kani's construction of split Jacobians by tying two elliptic curves together along their *n*-torsion groups. HNR06

 \mathcal{A} ordinary, simple over \mathbb{F}_q , split over \mathbb{F}_{q^2} . Counting non Jacobians and p. p. Deligne modules. Comparison of the two numbers by Brauer relations in biquadratic fields. H04 + M04

 \mathcal{A} supersingular, simple over \mathbb{F}_q , split over \mathbb{F}_{q^2} . Mass formulas for quaternion hermitian forms and descent theory. HNR06

 ${\cal A}$ supersingular, p = 2, 3. Computation of the zeta function of a curve in terms of the defining equation. MN05 + H06

\mathcal{A} split over k: Kani's construction

E, E' elliptic curves/k, n positive integer

 $\psi \colon E[n] \xrightarrow{\sim} E'[n]$ isomorphism of group schemes that is an anti-isometry with respect to the Weil pairings.

The natural isogeny $E \times E' \longrightarrow (E \times E')/\operatorname{Graph}(\psi) =: A$ induces a principal polarization λ on A because $\operatorname{Graph}(\psi)$ is a maximal isotropic subgroup of $(E \times E')[n]$.

Kani finds necessary and sufficient conditions on *E*, *E'*, *n*, ψ for (*A*, λ) to be a Jacobian. For instance, for *n* prime:

Theorem (Kani 1997). (*A*, λ) is not a Jacobian iff there is an integer o < i < n and a geometric isogeny $\varphi \colon E \longrightarrow E'$ of degree i(n - i) such that $i\psi = \varphi_{|E[n]}$.

 \mathcal{A} ordinary, simple over \mathbb{F}_q , split over \mathbb{F}_{q^2}

 $f_{\mathcal{A}}(x) = x^4 + ax^2 + q^2$, |a| < 2q, $p \nmid a$, 2q - a nonsquare in \mathbb{Z} If $f_{\mathcal{A}}(\pi) = 0$, the number field $K = \mathbb{Q}(\pi)$ is biquadratic with intermediate quadratic subfields:

$$\begin{split} L &= \mathbb{Q}(a^2 - 4q^2), \qquad \mathcal{K}^+ = \mathbb{Q}(2q - a), \qquad L' = \mathbb{Q}(-2q - a) \\ \mathcal{A}_{\mathsf{PP}} &:= \{(A, \lambda) \mid A \in \mathcal{A}\}_{/k-\mathsf{isomorphism}} \text{ of polarized surfaces} \\ \mathcal{A}_{\mathsf{NJ}} &:= \{(A, \lambda) \in \mathcal{A}_{\mathsf{PP}} \mid (A, \lambda) \text{ splits over } \mathbb{F}_{q^2}\} \subseteq \mathcal{A}_{\mathsf{PP}} \end{split}$$

$$|\mathcal{A}_{\mathsf{NJ}}| = \frac{1}{2} \left(\sum_{\mathbb{Z}[\pi^2] \subseteq \mathcal{O} \subseteq \mathcal{O}_L} h(\mathcal{O}) + \left[\sum_{\mathbb{Z}[i\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_{L'}} h(\mathcal{O}) \right]_{L' = \mathbb{Q}(i)} + [1]_{L', K^+} \right)$$

(ロ) (同) (三) (三) (三) (○) (○)

Counting polarizations

Consider the order $R = \mathbb{Z}[\pi, \overline{\pi}]$ of \mathcal{O}_{K} . Let $\mathcal{F}(R)$ be the category whose objects are nonzero finitely generated sub-*R*-modules of *K* and

$$\operatorname{Hom}_{\mathcal{F}(R)}(M,N) = \{ \alpha \in K \mid \alpha M \subseteq N \}$$

Deligne established in 1969 an equivalence of categories $D: \mathcal{A} \longrightarrow \mathcal{F}(R)$ through which duality of abelian varieties is translated into: $M^{\wedge} := \overline{M}^*$, where ()* indicates dual under the trace pairing of K/\mathbb{Q} .

Theorem (Howe 1995). An isomorphism $\alpha M = M^{\wedge}$ is a principal polarization on *M* iff α is *D*-positive.

 $|\mathcal{A}_{\mathsf{PP}}| = |\{(M, \alpha) \mid M \in \mathcal{F}(R), \ \alpha \text{ pp on } M\}_{\mathsf{/iso of pol. modules}}|$ $\mathcal{F}(R) = \coprod_{R \subseteq \mathcal{O} \subseteq \mathcal{O}_{K}} \mathcal{F}_{\mathcal{O}} := \{M \in \mathcal{F}(R) \mid \mathsf{End}(M) = \mathcal{O}\}$ $|\mathcal{A}_{\mathsf{PP}}| = \sum_{R \subseteq \mathcal{O} \subseteq \mathcal{O}_{K}} |\mathcal{A}_{\mathsf{PP}, \mathcal{O}}|.$

If \mathcal{O} Gorenstein and flat over $\mathcal{O}^+ := \mathcal{O} \cap \mathcal{O}_{K^+}$:

$$|\mathcal{A}_{\mathsf{PP},\mathcal{O}}| = \left(U_{>0}^+ \colon \mathsf{N}(U)\right) |\operatorname{Coker}(N)| \frac{h(\mathcal{O})}{h^+(\mathcal{O}^+)}$$

The comparison of these formulas with the formulas for $|A_{NJ}|$ is still involved. If for an order O in a number field K we denote:

$$g(\mathcal{O}) := 2^{r_1} h(\mathcal{O}) R(\mathcal{O}) / w(\mathcal{O}) t(\mathcal{O})$$

R =regulator, *w* =number of roots of unity, $t = |tor(I(\mathcal{O}))|$ and r_1 =number of real embeddings, we have:

Dedekind-Sands. $g(\mathcal{O}) = g(\mathcal{O}_{\mathcal{K}})$ Brauer. $g(\mathcal{O}_{\mathcal{K}}) = g(\mathcal{O}_{L})g(\mathcal{O}_{\mathcal{K}^{+}})g(\mathcal{O}_{L'})$ $|\mathcal{A}_{PP}| = \sum_{\mathcal{O}} |\mathcal{A}_{PP,\mathcal{O}}| = |\mathcal{A}_{NJ}|, \text{ for } a = -2q + 2 \quad H04$ $|\mathcal{A}_{PP}| \ge \sum_{\mathcal{O}^{"}good"} |\mathcal{A}_{PP,\mathcal{O}}| > |\mathcal{A}_{NJ}|, \text{ for } a > -2q + 2 \quad M04$ \mathcal{A} supersingular, simple over \mathbb{F}_q , split over \mathbb{F}_{q^2}

E elliptic curve/ \mathbb{F}_p with null trace of Frobenius: $\pi_E^2 = -p$

 $\mathcal{O} := \text{End}(E)$ maximal order in the definite quaternion algebra *B* with discriminant *p*

 $E[p] \simeq \alpha_p$ finite group scheme, $\operatorname{Hom}(\alpha_p, E) = \operatorname{End}(\alpha_p) = \overline{k}$ $(i, j) \in \mathbb{P}^1(\overline{k})$ determines an exact sequence of group schemes $0 \to \alpha_p \xrightarrow{(i,j)} E \times E \longrightarrow (E \times E)/\alpha_p =: A_{ij} \to 0$

Theorem (Oort 1975). A/\overline{k} supersingular abelian surface. According to A being isomorphic to the product of two elliptic curves or not, it has only two possibilities

$$A \simeq E \times E, \qquad A \simeq A_{ij}, \quad (i,j) \in \mathbb{P}^1(\overline{k}) \setminus \mathbb{P}^1(\mathbb{F}_{\rho^2})$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Polarizations and quaternion hermitian forms

Theorem (Serre, Ibukiyama, Katsura, Oort 1986). The set of principal polarizations on $E \times E$ (resp. A_{ij}) is in bijection with the following set Λ^{princ} (resp. Λ^{nprinc}) of quaternion hermitian forms:

$$\Lambda^{\text{princ}} = \left\{ \begin{pmatrix} s & r \\ \overline{r} & t \end{pmatrix} \mid s, t \in \mathbb{Z}_+, r \in \mathcal{O}, st - r\overline{r} = 1 \right\}$$

$$\Lambda^{\operatorname{nprinc}} = \left\{ egin{pmatrix} ps & r \ \overline{r} & pt \end{pmatrix} s, \ t \in \mathbb{Z}_+, \ r \in \mathcal{O}, \ p^2 st - r\overline{r} = p
ight\}.$$

Thus, for any (A, λ) p.p. abelian surface/k, the p.p. surface $(A, \lambda) \otimes_k \overline{k}$ is determined by the following data $(E \times E, H), H \in \Lambda^{\text{princ}}$, or $(E \times E, H), H \in \Lambda^{\text{nprinc}}, \quad (i, j) \in \mathbb{P}^1(\overline{k}) \setminus \mathbb{P}^1(\mathbb{F}_{p^2})$ In the latter case (A, λ) is automatically a Jacobian. Descent to a given isogeny class in k

For simplicity we assume from now on that $q = p^{2n}$.

Theorem. The p.p. surface/ \overline{k} associated to the data

$$(\boldsymbol{E} imes \boldsymbol{E}, \boldsymbol{H}) \qquad \left[\mathsf{plus} \ (i,j) \in \mathbb{P}^1(\overline{k}) \setminus \mathbb{P}^1(\mathbb{F}_{p^2})
ight]$$

descends to k iff there exists $\alpha \in GL_2(\mathcal{O}) = Aut(E \times E)$ s.t.

$$lpha^{\dagger} H lpha = H \qquad \left[\mathsf{plus} \ \tilde{lpha}(i^{\sigma}, j^{\sigma}) = (i, j) \ \ \mathsf{in} \ \mathbb{P}^1(\overline{k})
ight]$$

and the descended surface A lies in the following isogeny class:

$$f_{A}(x) = (x^{2} \pm 2\sqrt{q}x + q)^{2} \quad \text{iff} \quad \alpha = \mp (-1)^{n}$$

$$f_{A}(x) = x^{4} + 2qx^{2} + q^{2} \quad \text{iff} \quad \alpha^{2} = -1$$

$$f_{A}(x) = x^{4} - qx^{2} + q^{2} \quad \text{iff} \quad \alpha^{4} - \alpha^{2} = -1$$

$$f_{A}(x) = x^{4} + q^{2} \quad \text{iff} \quad \alpha^{4} = -1$$

Descent to a Jacobian

Nonprincipal descent. The existence and non existence of a descent to a given isogeny class can be determined using results of T. Ibukiyama (1989) on mass formulas for quaternion hermitian forms with a given structure of the automorphism group.

Principal descent. For positive results one starts with a curve *C* having many automorphisms and such that J_C is geometrically isomorphic to $E \times E$. From the structure of Aut(*C*) one can deduce the existence of an automorphism α of $E \times E$ satisfying the required conditions. The descended surface is a Jacobian because it is geometrically isomorphic to J_C .

For negative results one shows that if the Jacobian of a curve C lies in a certain isogeny class this forces the curve C to have automorphisms of certain order. Then one checks that such a curve does not exist.