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Algebraic curves of genus 2 over a finite field Fq

C : y2 = 2x6 + 3x5 − 7, C : y2 + y = x3 + x−1

We are interested in the numerical data Nn := |C(Fqn)|. This
information is captured by the Zeta function of C/Fq:

Z (C/Fq, x) = exp

∑
n≥1

Nn

n
xn

 =
1 + ax + bx2 + qax3 + q2x4

(1− x)(1− qx)

for some a, b ∈ Z.

The whole family Nn is determined by N1 and N2.



Fix k = Fq a finite field of characteristic p.

Question. What polynomials occur as the numerator of the
zeta function of a projective smooth curve of genus 2 defined
over Fq?

Question. For what values of (N1,N2) there exists a projective
smooth curve C of genus 2 defined over Fq such that
|C(Fq)| = N1, |C(Fq2)| = N2?

For elliptic curves this question was answered by W.C.
Waterhouse in his 1969 thesis.

For curves of genus 2 this question was raised by H.G. Rück in
his 1990 thesis.



Jacobians enter into the game

We attach to C a more feasible object: its Jacobian JC , which is
an abelian surface defined over k .

The richer algebraic structure of abelian varieties allows a
deeper understanding of these objects.

An important invariant of an abelian surface A over a finite field
is the Weil polynomial, which is the characteristic polynomial of
the Frobenius endomorphism

fA(x) = x4 + ax3 + bx2 + qax + q2 ∈ Z[x ]

If A is the Jacobian of a curve C then the integers a, b are the
same integers that appeared in the numerator of the zeta
function of C.



J. Tate and T. Honda in the sixties:

1. fA(x) = fB(x) iff A and B are k -isogenous

2. The p-Newton polygon of fA(x) has three possibilities
according to dimFp A[p] = 2,1,0
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ordinary mixed supersingular
p-rank 2 p-rank 1 p-rank 0

3. We know all polynomials that occur as fA(x) for some
abelian surface A/k



Our problem is, then, to identify the family of all Weil
polynomials of Jacobians inside the well-known family of all
Weil polynomials of abelian surfaces

{fJC (x) | C/k curve of genus 2} ⊆ {fA(x) | A abelian surface/k}

Question. What isogeny classes of abelian surfaces/k do
contain a Jacobian?

Oort and Ueno proved in 1973 that all isogeny classes of
abelian surfaces contain Jacobians if k = k .

Thus, there is no geometric obstruction to our problem.



p-rank Condition on p and q Conditions on s and t

— — |s − t | = 1

2 — s = t and t2 − 4q ∈ {−3,−4,−7}

2 q = 2 |s| = |t | = 1 and s 6= t

1 q square s2 = 4q and s − t squarefree

0 p > 3 s2 6= t2

0 p = 3 and q nonsquare s2 = t2 = 3q

0 p = 3 and q square s − t is not divisible by 3
√

q

0 p = 2 s2 − t2 is not divisible by 2q

0 q = 2 or q = 3 s = t

0 q = 4 or q = 9 s2 = t2 = 4q

Table: Conditions that ensure that the split isogeny class with Weil
polynomial (x2 − sx + q)(x2 − tx + q) does not contain a Jacobian.
Here we assume that |s| ≥ |t |.



p-rank Condition on p and q Conditions on a and b

— — a2 − b = q and b < 0 and all

prime divisors of b are 1 mod 3

2 — a = 0 and b = 1− 2q

2 p > 2 a = 0 and b = 2− 2q

0 p ≡ 11 mod 12 and q square a = 0 and b = −q

0 p = 3 and q square a = 0 and b = −q

0 p = 2 and q nonsquare a = 0 and b = −q

0 q = 2 or q = 3 a = 0 and b = −2q

Table: Conditions that ensure that the simple isogeny class with Weil
polynomial x4 + ax3 + bx2 + aqx + q2 does not contain a Jacobian.



Jacobians are determined by principal polarizations

Theorem (Weil 1957). An abelian surface A/Fq is not
Fq-isomorphic to the Jacobian of a smooth projective curve/Fq
iff for all principal polarizations λ of A defined over Fq

(A, λ) 'Fq2 (E × E ′, λsplit)

as polarized surfaces.

Corollary. If A/Fq is simple over Fq2 then it is Fq-isomorphic to
a Jacobian iff it admits a principal polarization/Fq.

Question. What isogeny classes of abelian surfaces/k do
contain a surface admitting a principal polarization/k?

We say that such isogeny class is principally polarizable



This (weaker) question was studied by E. Howe in a series of
papers (1995,1996, 2001), where he expressed the obstruction
to the existence of principal polarizations in an isogeny class A
of abelian varieties in terms of the vanishing of an element IA of
a group BA constructed from the Grothendieck group of the
category of finite group schemes that are kernels of isogenies
between two abelian varieties in A.

Using class field theory the obstruction group BA and the
obstruction element IA could be described in terms of purely
arithmetic data.

Theorem (HMNR 2006). Let A be an isogeny class of abelian
surfaces/Fq with Weil polynomial x4 + a x3 + b x2 + aq x + q2.
Then, A is not principally polarizable iff a2 − b = q, b < 0 and
all prime divisors of b are congruent to 1 mod 3.



Jacobians in isogeny classes: sketch of the methods

A simple over Fq2 . Howe’s obstruction group and element for
A to be principally polarizable. H95 + MN02 + HMNR06

A split over Fq. Kani’s construction of split Jacobians by tying
two elliptic curves together along their n-torsion groups. HNR06

A ordinary, simple over Fq, split over Fq2 . Counting non
Jacobians and p. p. Deligne modules. Comparison of the two
numbers by Brauer relations in biquadratic fields. H04 + M04

A supersingular, simple over Fq, split over Fq2 . Mass
formulas for quaternion hermitian forms and descent theory.
HNR06

A supersingular, p = 2, 3. Computation of the zeta function of
a curve in terms of the defining equation. MN05 + H06



A split over k : Kani’s construction

E , E ′ elliptic curves/k , n positive integer

ψ : E [n]
∼−→ E ′[n] isomorphism of group schemes that is an

anti-isometry with respect to the Weil pairings.

The natural isogeny E × E ′ −→ (E × E ′)/Graph(ψ) =: A
induces a principal polarization λ on A because Graph(ψ) is a
maximal isotropic subgroup of (E × E ′)[n].

Kani finds necessary and sufficient conditions on E , E ′, n, ψ
for (A, λ) to be a Jacobian. For instance, for n prime:

Theorem (Kani 1997). (A, λ) is not a Jacobian iff there is an
integer o < i < n and a geometric isogeny ϕ : E −→ E ′ of
degree i(n − i) such that iψ = ϕ|E [n].



A ordinary, simple over Fq, split over Fq2

fA(x) = x4 + ax2 + q2, |a| < 2q, p - a, 2q − a nonsquare in Z

If fA(π) = 0, the number field K = Q(π) is biquadratic with
intermediate quadratic subfields:

L = Q(a2 − 4q2), K + = Q(2q − a), L′ = Q(−2q − a)

APP := {(A, λ) | A ∈ A}/k−isomorphism of polarized surfaces

ANJ :=
{
(A, λ) ∈ APP | (A, λ) splits over Fq2

}
⊆ APP

|ANJ| =
1
2

 ∑
Z[π2]⊆O⊆OL

h(O) +

 ∑
Z[iπ]⊆O⊆OL′

h(O)


L′=Q(i)

+ [1]L′,K +

 .



Counting polarizations
Consider the order R = Z[π, π] of OK . Let F(R) be the
category whose objects are nonzero finitely generated
sub-R-modules of K and

HomF(R)(M,N) = {α ∈ K | αM ⊆ N}

Deligne established in 1969 an equivalence of categories
D : A −→ F(R) through which duality of abelian varieties is
translated into: M∧ := M

∗
, where ( )∗ indicates dual under the

trace pairing of K/Q.

Theorem (Howe 1995). An isomorphism αM = M∧ is a
principal polarization on M iff α is D-positive.

|APP| = |{(M, α) | M ∈ F(R), α pp on M}/iso of pol. modules|

F(R) =
∐

R⊆O⊆OK

FO := {M ∈ F(R) | End(M) = O}

|APP| =
∑

R⊆O⊆OK

|APP,O|.



If O Gorenstein and flat over O+ := O ∩OK + :

|APP,O| =
(
U+

>0 : N(U)
)
|Coker(N)| h(O)

h+(O+)

The comparison of these formulas with the formulas for |ANJ| is
still involved. If for an order O in a number field K we denote:

g(O) := 2r1h(O)R(O)/w(O)t(O)

R =regulator, w =number of roots of unity, t = | tor(I(O))| and
r1 =number of real embeddings, we have:

Dedekind-Sands. g(O) = g(OK )

Brauer. g(OK ) = g(OL)g(OK +)g(OL′)

|APP| =
∑

O |APP,O| = |ANJ|, for a = −2q + 2 H04

|APP| ≥
∑

O“good” |APP,O| > |ANJ|, for a > −2q + 2 M04



A supersingular, simple over Fq, split over Fq2

E elliptic curve/Fp with null trace of Frobenius: π2
E = −p

O := End(E) maximal order in the definite quaternion algebra
B with discriminant p

E [p] ' αp finite group scheme, Hom(αp,E) = End(αp) = k

(i , j) ∈ P1(k) determines an exact sequence of group schemes

0 → αp
(i,j)−→ E × E −→ (E × E)/αp =: Aij → 0

Theorem (Oort 1975). A/k supersingular abelian surface.
According to A being isomorphic to the product of two elliptic
curves or not, it has only two possibilities

A ' E × E , A ' Aij , (i , j) ∈ P1(k) \ P1(Fp2)



Polarizations and quaternion hermitian forms

Theorem (Serre,Ibukiyama,Katsura,Oort 1986). The set of
principal polarizations on E ×E (resp. Aij ) is in bijection with the
following set Λprinc (resp. Λnprinc) of quaternion hermitian forms:

Λprinc =

{(
s r
r t

)
| s, t ∈ Z+, r ∈ O, st − r r = 1

}

Λnprinc =

{(
ps r
r pt

)
s, t ∈ Z+, r ∈ O, p2st − r r = p

}
.

Thus, for any (A, λ) p.p. abelian surface/k , the p.p. surface
(A, λ)⊗k k is determined by the following data

(E × E ,H), H ∈ Λprinc, or

(E × E ,H), H ∈ Λnprinc, (i , j) ∈ P1(k) \ P1(Fp2)

In the latter case (A, λ) is automatically a Jacobian.



Descent to a given isogeny class in k
For simplicity we assume from now on that q = p2n.

Theorem. The p.p. surface/k associated to the data

(E × E ,H)
[
plus (i , j) ∈ P1(k) \ P1(Fp2)

]
descends to k iff there exists α ∈ GL2(O) = Aut(E × E) s.t.

α†Hα = H
[
plus α̃(iσ, jσ) = (i , j) in P1(k)

]
and the descended surface A lies in the following isogeny class:

fA(x) = (x2 ± 2
√

qx + q)2 iff α = ∓(−1)n

fA(x) = x4 + 2qx2 + q2 iff α2 = −1

fA(x) = x4 − qx2 + q2 iff α4 − α2 = −1

fA(x) = x4 + q2 iff α4 = −1



Descent to a Jacobian

Nonprincipal descent. The existence and non existence of a
descent to a given isogeny class can be determined using
results of T. Ibukiyama (1989) on mass formulas for quaternion
hermitian forms with a given structure of the automorphism
group.

Principal descent. For positive results one starts with a curve
C having many automorphisms and such that JC is
geometricaly isomorphic to E × E . From the structure of Aut(C)
one can deduce the existence of an automorphism α of E × E
satisfying the required conditions. The descended surface is a
Jacobian because it is geometrically isomorphic to JC .

For negative results one shows that if the Jacobian of a curve C
lies in a certain isogeny class this forces the curve C to have
automorphisms of certain order. Then one checks that such a
curve does not exist.


