Jacobians in isogeny classes of abelian surfaces over finite fields

Enric Nart

Sevilla, December 15th of 2006

Joint work with:
Everett Howe, Daniel Maisner and Christophe Ritzenthaler

Algebraic curves of genus 2 over a finite field \mathbb{F}_{q}

$$
C: y^{2}=2 x^{6}+3 x^{5}-7, \quad C: y^{2}+y=x^{3}+x^{-1}
$$

We are interested in the numerical data $N_{n}:=\left|C\left(\mathbb{F}_{q^{n}}\right)\right|$. This information is captured by the Zeta function of C / \mathbb{F}_{q} :

$$
Z\left(C / \mathbb{F}_{q}, x\right)=\exp \left(\sum_{n \geq 1} \frac{N_{n}}{n} x^{n}\right)=\frac{1+a x+b x^{2}+q a x^{3}+q^{2} x^{4}}{(1-x)(1-q x)}
$$

for some $a, b \in \mathbb{Z}$.
The whole family N_{n} is determined by N_{1} and N_{2}.

Fix $k=\mathbb{F}_{q}$ a finite field of characteristic p.
Question. What polynomials occur as the numerator of the zeta function of a projective smooth curve of genus 2 defined over \mathbb{F}_{q} ?

Question. For what values of $\left(N_{1}, N_{2}\right)$ there exists a projective smooth curve C of genus 2 defined over \mathbb{F}_{q} such that $\left|C\left(\mathbb{F}_{q}\right)\right|=N_{1},\left|C\left(\mathbb{F}_{q^{2}}\right)\right|=N_{2}$?

For elliptic curves this question was answered by W.C. Waterhouse in his 1969 thesis.

For curves of genus 2 this question was raised by H.G. Rück in his 1990 thesis.

Jacobians enter into the game

We attach to C a more feasible object: its Jacobian J_{C}, which is an abelian surface defined over k.

The richer algebraic structure of abelian varieties allows a deeper understanding of these objects.
An important invariant of an abelian surface A over a finite field is the Weil polynomial, which is the characteristic polynomial of the Frobenius endomorphism

$$
f_{A}(x)=x^{4}+a x^{3}+b x^{2}+q a x+q^{2} \in \mathbb{Z}[x]
$$

If A is the Jacobian of a curve C then the integers a, b are the same integers that appeared in the numerator of the zeta function of C.
J. Tate and T . Honda in the sixties:

1. $f_{A}(x)=f_{B}(x)$ iff A and B are k-isogenous
2. The p-Newton polygon of $f_{A}(x)$ has three possibilities according to $\operatorname{dim}_{\mathbb{F}_{p}} A[p]=2,1,0$

p-rank 2

p-rank 1

p-rank 0
3. We know all polynomials that occur as $f_{A}(x)$ for some abelian surface A / k

Our problem is, then, to identify the family of all Weil polynomials of Jacobians inside the well-known family of all Weil polynomials of abelian surfaces
$\left\{f_{J_{C}}(x) \mid C / k\right.$ curve of genus 2$\} \subseteq\left\{f_{A}(x) \mid A\right.$ abelian surface $\left./ k\right\}$

Question. What isogeny classes of abelian surfaces $/ k$ do contain a Jacobian?

Oort and Ueno proved in 1973 that all isogeny classes of abelian surfaces contain Jacobians if $k=\bar{k}$.

Thus, there is no geometric obstruction to our problem.

p-rank	Condition on p and q	Conditions on s and t
-	-	$\|s-t\|=1$
2	-	$s=t$ and $t^{2}-4 q \in\{-3,-4,-7\}$
2	$q=2$	$\|s\|=\|t\|=1$ and $s \neq t$
1	q square	$s^{2}=4 q$ and $s-t$ squarefree
0	$p>3$	$s^{2} \neq t^{2}$
0	$p=3$ and q nonsquare	$s^{2}=t^{2}=3 q$
0	$p=3$ and q square	$s-t$ is not divisible by $3 \sqrt{q}$
0	$p=2$	$s^{2}-t^{2}$ is not divisible by $2 q$
0	$q=2$ or $q=3$	$s=t$
0	$q=4$ or $q=9$	$s^{2}=t^{2}=4 q$

Table: Conditions that ensure that the split isogeny class with Weil polynomial $\left(x^{2}-s x+q\right)\left(x^{2}-t x+q\right)$ does not contain a Jacobian. Here we assume that $|s| \geq|t|$.

p-rank	Condition on p and q	Conditions on a and b
-	-	$a^{2}-b=q$ and $b<0$ and all prime divisors of b are $1 \bmod 3$
2	-	$a=0$ and $b=1-2 q$
2	$p>2$	$a=0$ and $b=2-2 q$
0	$p \equiv 11 \bmod 12$ and q square	$a=0$ and $b=-q$
0	$p=3$ and q square	$a=0$ and $b=-q$
0	$p=2$ and q nonsquare	$a=0$ and $b=-q$
0	$q=2$ or $q=3$	$a=0$ and $b=-2 q$

Table: Conditions that ensure that the simple isogeny class with Weil polynomial $x^{4}+a x^{3}+b x^{2}+a q x+q^{2}$ does not contain a Jacobian.

Jacobians are determined by principal polarizations

Theorem (Weil 1957). An abelian surface A / \mathbb{F}_{q} is not \mathbb{F}_{q}-isomorphic to the Jacobian of a smooth projective curve $/ \mathbb{F}_{q}$ iff for all principal polarizations λ of A defined over \mathbb{F}_{q}

$$
(A, \lambda) \simeq_{\mathbb{F}_{q^{2}}}\left(E \times E^{\prime}, \lambda_{\text {split }}\right)
$$

as polarized surfaces.
Corollary. If A / \mathbb{F}_{q} is simple over $\mathbb{F}_{q^{2}}$ then it is \mathbb{F}_{q}-isomorphic to a Jacobian iff it admits a principal polarization $/ \mathbb{F}_{q}$.

Question. What isogeny classes of abelian surfaces $/ k$ do contain a surface admitting a principal polarization $/ k$?

We say that such isogeny class is principally polarizable

This (weaker) question was studied by E. Howe in a series of papers $(1995,1996,2001)$, where he expressed the obstruction to the existence of principal polarizations in an isogeny class \mathcal{A} of abelian varieties in terms of the vanishing of an element $I_{\mathcal{A}}$ of a group $\mathcal{B}_{\mathcal{A}}$ constructed from the Grothendieck group of the category of finite group schemes that are kernels of isogenies between two abelian varieties in \mathcal{A}.

Using class field theory the obstruction group $\mathcal{B}_{\mathcal{A}}$ and the obstruction element $I_{\mathcal{A}}$ could be described in terms of purely arithmetic data.

Theorem (HMNR 2006). Let \mathcal{A} be an isogeny class of abelian surfaces $/ \mathbb{F}_{q}$ with Weil polynomial $x^{4}+a x^{3}+b x^{2}+a q x+q^{2}$. Then, \mathcal{A} is not principally polarizable iff $a^{2}-b=q, b<0$ and all prime divisors of b are congruent to $1 \bmod 3$.

Jacobians in isogeny classes: sketch of the methods

\mathcal{A} simple over $\mathbb{F}_{q^{2}}$. Howe's obstruction group and element for \mathcal{A} to be principally polarizable. H95 + MN02 + HMNR06
\mathcal{A} split over \mathbb{F}_{q}. Kani's construction of split Jacobians by tying two elliptic curves together along their n-torsion groups. HNR06
\mathcal{A} ordinary, simple over \mathbb{F}_{q}, split over $\mathbb{F}_{q^{2}}$. Counting non Jacobians and p. p. Deligne modules. Comparison of the two numbers by Brauer relations in biquadratic fields. $\mathrm{H} 04+\mathrm{M} 04$
\mathcal{A} supersingular, simple over \mathbb{F}_{q}, split over $\mathbb{F}_{q^{2}}$. Mass formulas for quaternion hermitian forms and descent theory. HNR06
\mathcal{A} supersingular, $p=2,3$. Computation of the zeta function of a curve in terms of the defining equation. MN05 + H06

\mathcal{A} split over k : Kani's construction

E, E^{\prime} elliptic curves/ k, n positive integer
$\psi: E[n] \xrightarrow{\sim} E^{\prime}[n]$ isomorphism of group schemes that is an anti-isometry with respect to the Weil pairings.

The natural isogeny $E \times E^{\prime} \longrightarrow\left(E \times E^{\prime}\right) / \operatorname{Graph}(\psi)=: A$ induces a principal polarization λ on A because $\operatorname{Graph}(\psi)$ is a maximal isotropic subgroup of $\left(E \times E^{\prime}\right)[n]$.

Kani finds necessary and sufficient conditions on E, E^{\prime}, n, ψ for (A, λ) to be a Jacobian. For instance, for n prime:

Theorem (Kani 1997). (A, λ) is not a Jacobian iff there is an integer $o<i<n$ and a geometric isogeny $\varphi: E \longrightarrow E^{\prime}$ of degree $i(n-i)$ such that $i \psi=\varphi_{\mid E[n]}$.

\mathcal{A} ordinary, simple over \mathbb{F}_{q}, split over $\mathbb{F}_{q^{2}}$

$f_{\mathcal{A}}(x)=x^{4}+a x^{2}+q^{2},|a|<2 q, p \nmid a, 2 q-a$ nonsquare in \mathbb{Z}
If $f_{\mathcal{A}}(\pi)=0$, the number field $K=\mathbb{Q}(\pi)$ is biquadratic with intermediate quadratic subfields:

$$
\begin{gathered}
L=\mathbb{Q}\left(a^{2}-4 q^{2}\right), \quad K^{+}=\mathbb{Q}(2 q-a), \quad L^{\prime}=\mathbb{Q}(-2 q-a) \\
\mathcal{A}_{\mathrm{PP}}:=\{(A, \lambda) \mid A \in \mathcal{A}\}_{/ K \text {-isomorphism of polarized surfaces }} \\
\mathcal{A}_{\mathrm{NJ} J}:=\left\{(A, \lambda) \in \mathcal{A}_{\mathrm{PP}} \mid(A, \lambda) \text { splits over } \mathbb{F}_{q^{2}}\right\} \subseteq \mathcal{A}_{\mathrm{PP}} \\
\left|\mathcal{A}_{\mathrm{NJ}}\right|=\frac{1}{2}\left(\sum_{\mathbb{Z}\left[\pi^{2}\right] \subseteq \mathcal{O} \subseteq \mathcal{O}_{L}} h(\mathcal{O})+\left[\sum_{\mathbb{Z}[i \pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_{L^{\prime}}} h(\mathcal{O})\right]_{L^{\prime}=\mathbb{Q}(i)}+[1]_{L^{\prime}, K^{+}}\right) .
\end{gathered}
$$

Counting polarizations

Consider the order $R=\mathbb{Z}[\pi, \bar{\pi}]$ of \mathcal{O}_{K}. Let $\mathcal{F}(R)$ be the category whose objects are nonzero finitely generated sub- R-modules of K and

$$
\operatorname{Hom}_{\mathcal{F}(R)}(M, N)=\{\alpha \in K \mid \alpha M \subseteq N\}
$$

Deligne established in 1969 an equivalence of categories $D: \mathcal{A} \longrightarrow \mathcal{F}(R)$ through which duality of abelian varieties is translated into: $M^{\wedge}:=\bar{M}^{*}$, where ($)^{*}$ indicates dual under the trace pairing of K / \mathbb{Q}.
Theorem (Howe 1995). An isomorphism $\alpha M=M^{\wedge}$ is a principal polarization on M iff α is D-positive.

$$
\begin{gathered}
\left|\mathcal{A}_{\mathrm{PP}}\right|=\mid\{(M, \alpha) \mid M \in \mathcal{F}(R), \alpha \mathrm{pp} \text { on } M\} / \text { /iso of pol. modules } \mid \\
\mathcal{F}(R)=\coprod_{R \subseteq \mathcal{O} \subseteq \mathcal{O}_{K}} \mathcal{F}_{\mathcal{O}}:=\{M \in \mathcal{F}(R) \mid \operatorname{End}(M)=\mathcal{O}\} \\
\left|\mathcal{A}_{\mathrm{PPP}}\right|=\sum_{R \subseteq \mathcal{O} \subseteq \mathcal{O}_{K}}\left|\mathcal{A}_{\mathrm{PP}, \mathcal{O}}\right| .
\end{gathered}
$$

If \mathcal{O} Gorenstein and flat over $\mathcal{O}^{+}:=\mathcal{O} \cap \mathcal{O}_{K^{+}}$:

$$
\left|\mathcal{A}_{\mathrm{PP}, \mathcal{O}}\right|=\left(U_{>0}^{+}: \mathrm{N}(U)\right)|\operatorname{Coker}(N)| \frac{h(\mathcal{O})}{h^{+}\left(\mathcal{O}^{+}\right)}
$$

The comparison of these formulas with the formulas for $\left|\mathcal{A}_{\mathrm{NJ}}\right|$ is still involved. If for an order \mathcal{O} in a number field K we denote:

$$
g(\mathcal{O}):=2^{r_{1}} h(\mathcal{O}) R(\mathcal{O}) / w(\mathcal{O}) t(\mathcal{O})
$$

$R=$ regulator, $w=$ number of roots of unity, $t=|\operatorname{tor}(I(\mathcal{O}))|$ and $r_{1}=$ number of real embeddings, we have:

Dedekind-Sands. $g(\mathcal{O})=g\left(\mathcal{O}_{K}\right)$
Brauer. $g\left(\mathcal{O}_{K}\right)=g\left(\mathcal{O}_{L}\right) g\left(\mathcal{O}_{K^{+}}\right) g\left(\mathcal{O}_{L^{\prime}}\right)$
$\left|\mathcal{A}_{\mathrm{PP}}\right|=\sum_{\mathcal{O}}\left|\mathcal{A}_{\mathrm{PP}, \mathcal{O}}\right|=\left|\mathcal{A}_{\mathrm{NJ}}\right|$, for $\mathrm{a}=-2 q+2 \quad \mathrm{H} 04$
$\left|\mathcal{A}_{\mathrm{PP}}\right| \geq \sum_{\mathcal{O} \text { "good" }}\left|\mathcal{A}_{\mathrm{PP}, \mathcal{O}}\right|>\left|\mathcal{A}_{\mathrm{NJ}}\right|$, for $a>-2 q+2$ M04

\mathcal{A} supersingular, simple over \mathbb{F}_{q}, split over $\mathbb{F}_{q^{2}}$

E elliptic curve $/ \mathbb{F}_{p}$ with null trace of Frobenius: $\pi_{E}^{2}=-p$
$\mathcal{O}:=\operatorname{End}(E)$ maximal order in the definite quaternion algebra B with discriminant p
$E[p] \simeq \alpha_{p}$ finite group scheme, $\operatorname{Hom}\left(\alpha_{p}, E\right)=\operatorname{End}\left(\alpha_{p}\right)=\bar{k}$
$(i, j) \in \mathbb{P}^{1}(\bar{k})$ determines an exact sequence of group schemes

$$
0 \rightarrow \alpha_{\rho} \xrightarrow{(i, j)} E \times E \longrightarrow(E \times E) / \alpha_{p}=: A_{i j} \rightarrow 0
$$

Theorem (Oort 1975). A / \bar{k} supersingular abelian surface. According to A being isomorphic to the product of two elliptic curves or not, it has only two possibilities

$$
A \simeq E \times E, \quad A \simeq A_{i j}, \quad(i, j) \in \mathbb{P}^{1}(\bar{k}) \backslash \mathbb{P}^{1}\left(\mathbb{F}_{p^{2}}\right)
$$

Polarizations and quaternion hermitian forms

Theorem (Serre,Ibukiyama,Katsura,Oort 1986). The set of principal polarizations on $E \times E$ (resp. $A_{i j}$) is in bijection with the following set $\Lambda^{\text {princ }}$ (resp. $\Lambda^{\text {nprinc }}$) of quaternion hermitian forms:

$$
\begin{gathered}
\Lambda^{\text {princ }}=\left\{\left.\left(\begin{array}{ll}
s & r \\
\bar{r} & t
\end{array}\right) \right\rvert\, s, t \in \mathbb{Z}_{+}, r \in \mathcal{O}, s t-r \bar{r}=1\right\} \\
\Lambda^{\text {nprinc }}=\left\{\left(\begin{array}{cc}
p s & r \\
\bar{r} & p t
\end{array}\right) s, t \in \mathbb{Z}_{+}, r \in \mathcal{O}, p^{2} s t-r \bar{r}=p\right\} .
\end{gathered}
$$

Thus, for any (A, λ) p.p. abelian surface $/ k$, the p.p. surface $(A, \lambda) \otimes_{k} \bar{k}$ is determined by the following data
$(E \times E, H), H \in \Lambda^{\text {princ }}$, or
$(E \times E, H), H \in \Lambda^{\text {nprinc }}, \quad(i, j) \in \mathbb{P}^{1}(\bar{k}) \backslash \mathbb{P}^{1}\left(\mathbb{F}_{p^{2}}\right)$
In the latter case (A, λ) is automatically a Jacobian.

Descent to a given isogeny class in k

For simplicity we assume from now on that $q=p^{2 n}$.
Theorem. The p.p. surface $/ \bar{k}$ associated to the data

$$
(E \times E, H) \quad\left[\operatorname{plus}(i, j) \in \mathbb{P}^{1}(\bar{k}) \backslash \mathbb{P}^{1}\left(\mathbb{F}_{p^{2}}\right)\right]
$$

descends to k iff there exists $\alpha \in \mathrm{GL}_{2}(\mathcal{O})=\operatorname{Aut}(E \times E)$ s.t.

$$
\alpha^{\dagger} H \alpha=H \quad\left[\text { plus } \tilde{\alpha}\left(i^{\sigma}, j^{\sigma}\right)=(i, j) \text { in } \mathbb{P}^{1}(\bar{k})\right]
$$

and the descended surface A lies in the following isogeny class:

$$
\begin{array}{lll}
f_{A}(x)=\left(x^{2} \pm 2 \sqrt{q} x+q\right)^{2} & \text { iff } & \alpha=\mp(-1)^{n} \\
f_{A}(x)=x^{4}+2 q x^{2}+q^{2} & \text { iff } & \alpha^{2}=-1 \\
f_{A}(x)=x^{4}-q x^{2}+q^{2} & \text { iff } & \alpha^{4}-\alpha^{2}=-1 \\
f_{A}(x)=x^{4}+q^{2} & \text { iff } & \alpha^{4}=-1
\end{array}
$$

Descent to a Jacobian

Nonprincipal descent. The existence and non existence of a descent to a given isogeny class can be determined using results of T. Ibukiyama (1989) on mass formulas for quaternion hermitian forms with a given structure of the automorphism group.

Principal descent. For positive results one starts with a curve C having many automorphisms and such that J_{C} is geometricaly isomorphic to $E \times E$. From the structure of $\operatorname{Aut}(C)$ one can deduce the existence of an automorphism α of $E \times E$ satisfying the required conditions. The descended surface is a Jacobian because it is geometrically isomorphic to J_{C}.
For negative results one shows that if the Jacobian of a curve C lies in a certain isogeny class this forces the curve C to have automorphisms of certain order. Then one checks that such a curve does not exist.

