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ABSTRACT

In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying
a ∆2-type condition, C a convex, ρ-bounded, ρ-a.e. compact subset of Lρ and
T : C → C a ρ-asymptotically nonexpansive mapping, then T has a fixed point.
In particular, any asymptotically nonexpansive self-map defined on a convex

subset of L1(Ω, µ) which is compact for the topology of local convergence in
measure has a fixed point.
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INTRODUCTION

Let (M, d) be a metric space. A mapping, T : M → M is said to be asymp-

totically nonexpansive if there exists a sequence {kn} of real numbers with
lim

n→∞
kn = 1 such that

d(T nx, T ny) ≤ knd(x, y)

for any x, y ∈ M and n ∈ N. In 1970 Goebel and Kirk [5] proved that T has a
fixed point whenever M is a convex bounded closed subset of a Banach space X.
Further generalizations of this result were proved by Yu and Dai [14] when X is

2-uniformly rotund, by Mart́ınez Yañez [10] and Xu [12] when X is k-uniformly

rotund for some k ≥ 1, by Xu [13] when X is nearly uniformly convex and by Kim

and Xu [9] when X has uniform normal stucture. Some special studies on the
theory of the fixed point for asymptotically nonexpansive mappings were made
by many other authors (see, for example, [2,11]).
The first fixed point results in modular function spaces were given by Khamsi,
Koz lowski and Reich [7]. Even though a metric is not defined, many problems in
metric fixed point theory can be reformulated in modular spaces. For instance,
fixed point theorems are proved in [6,7] for nonexpansive mappings, in [3] for

asymptotically regular mappings and in [4] for uniformly Lipschitzian mappings.
In this paper we will prove the existence of fixed points for asymptotically nonex-
pansive mappings in modular function spaces when the modular ρ satisfies some
convexity and ∆2-type properties.

Our results can be, in particular, applied to L1(Ω, µ), showing that asymptoti-
cally nonexpansive mappings have a fixed point when they are defined on a convex

subset of L1(Ω, µ) which is compact with respect to the topology of convergence
local in measure.

1. PRELIMINARIES

We start by reviewing some basic facts about modular spaces as formulated
by Koz lowski [8]. For more details the reader may consult [6,7].
Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let
P be a δ-ring of subsets of Σ, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ.
Let us assume that there exists an increasing sequence of sets Kn ∈ P such that
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Ω =
⋃

Kn. By E we denote the linear space of all simple functions with supports
from P. By M we will denote the space of all measurable functions, i.e. all
functions f : Ω → R such that there exists a sequence {gn} ∈ E , |gn| ≤ |f | and

gn(ω) → f(ω) for all ω ∈ Ω. By 1A we denote the characteristic function of the
set A.

Definition 1.1. A functional ρ : E × Σ → [0,∞] is called a function modu-
lar if:

(P1) ρ(0, E) = 0 for any E ∈ Σ,

(P2) ρ(f, E) ≤ ρ(g, E) whenever |f(ω)| ≤ |g(ω)| for any ω ∈ Ω, f, g ∈ E and
E ∈ Σ,

(P3) ρ(f, .) : Σ → [0,∞] is a σ-subadditive measure for every f ∈ E ,

(P4) ρ(α, A) → 0 as α decreases to 0 for every A ∈ P, where ρ(α, A) =

ρ(α1A, A),

(P5) if there exists α > 0 such that ρ(α, A) = 0, then ρ(β, A) = 0 for every
β > 0,

(P6) for any α > 0 ρ(α, .) is order continuous on P , that is ρ(α, An) → 0 if

{An} ∈ P and decreases to ∅.

The definition of ρ is then extended to f ∈M by

ρ(f, E) = sup{ρ(g, E); g ∈ E , |g(ω)| ≤ |f(ω)| for every ω ∈ Ω}.

Definition 1.2. A set E is said to be ρ-null if and only if ρ(α, E) = 0 for

α > 0. A property p(ω) is said to hold ρ-almost everywhere (ρ-a.e.) if the set

{ω ∈ Ω; p(ω) does not hold} is ρ-null. For example we will say frequently
fn → f ρ-a.e.

For the sake of simplicity we write ρ(f) instead of ρ(f, Ω).

Definition 1.3. A modular function ρ is called σ-finite if there exists an in-
creasing sequence of sets Kn ∈ P such that 0 < ρ(Kn) < ∞ and Ω =

⋃

Kn.

It is easy to see that the functional ρ : M→ [0,∞] is a modular and satisfies
the following properties:

(i) ρ(f) = 0 iff f = 0 ρ-a.e.
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(ii) ρ(αf) = ρ(f) for every scalar α with |α| = 1 and f ∈M.

(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α + β = 1, α ≥ 0, β ≥ 0 and f, g ∈M.

In addition, if the following property is satisfied

(iii)’ ρ(αf + βg) ≤ αρ(f) + βρ(g) if α + β = 1 ; α ≥ 0, β ≥ 0 and f, g ∈M,

we say that ρ is a convex modular.

The modular ρ defines a corresponding modular space, i.e the vector space Lρ

given by

Lρ = {f ∈M; ρ(λf) → 0 as λ → 0}.

When ρ is convex, the formula

||f ||ρ = inf
{

α > 0; ρ
(

f
α

)

≤ 1
}

defines a norm in the modular space Lρ which is frequently called the Luxemburg
norm. We can also consider the space

Eρ = {f ∈M; ρ(αf, An) → 0 as n →∞ for every An ∈
Σ that decreases to ∅ and α > 0}.

Definition 1.4. A function modular is said to satisfy the ∆2-condition if

sup
n≥1

ρ(2fn, Dk) → 0 as k →∞ whenever {fn}n≥1 ⊂M, Dk ∈

Σ decreases to ∅ and sup
n≥1

ρ(fn, Dk) → 0 as k →∞.

We know from [8] that Eρ = Lρ when ρ satisfies the ∆2-condition.

Definition 1.5. A function modular is said to satisfy the ∆2-type condition
if there exists K > 0 such that for any f ∈ Lρ we have ρ(2f) ≤ Kρ(f).

In general, ∆2-type condition and ∆2-condition are not equivalent, even though
it is obvious that ∆2-type condition implies ∆2-condition on the modular space
Lρ.

Definition 1.6. Let Lρ be a modular space.
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(1) The sequence {fn}n ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn −
f) → 0 as n →∞.

(2) The sequence {fn}n ⊂ Lρ is said to be ρ-a.e. convergent to f ∈ Lρ if the

set {ω ∈ Ω; fn(ω) 6→ f(ω)} is ρ-null.

(3) The sequence {fn}n ⊂ Lρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n
and m go to ∞.

(4) A subset C of Lρ is called ρ-closed if the ρ-limit of a ρ-convergent sequence
of C always belongs to C.

(5) A subset C of Lρ is called ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e.
convergent sequence of C always belongs to C.

(6) A subset C of Lρ is called ρ-a.e. compact if every sequence in C has a
ρ-a.e. convergent subsequence in C.

(7) A subset C of Lρ is called ρ-bounded if

δρ(C) = sup{ρ(f − g); f, g ∈ C} < ∞.

We recall two basic results (see [7]) in the theory of modular spaces.

(i) If there exists a number α > 0 such that ρ(α(fn − f)) → 0, then there

exists a subsequence {gn}n of {fn}n such that gn → f ρ-a.e.

(ii) (Lebesgue’s Theorem) If fn, f ∈ M, fn → f ρ-a.e. and there exists a

function g ∈ Eρ such that |fn| ≤ |g| ρ-a.e. for all n, then ||fn − f ||ρ → 0.

We know, by [6,7] that under ∆2-condition the norm convergence and modular
convergence are equivalent, which implies that the norm and modular conver-
gence are also the same when we deal with the ∆2-type condition.

In the sequel we will assume that the modular function ρ is convex and satisfies
the ∆2-type condition.

Definition 1.7. Let ρ be as above. We define a growth function ω by:

ω(t) = sup
{

ρ(tf)
ρ(f)

, f ∈ Lρ\{0}
}

for all 0 ≤ t < ∞.

We have the following:

Lemma 1.1. [3] Let ρ be as above. Then the growth function ω has the following
properties:
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(1) ω(t) < ∞ ,∀t ∈ [0,∞)

(2) ω : [0,∞) → [0,∞) is a convex, strictly increasing function. So, it is
continuous.

(3) ω(αβ) ≤ ω(α)ω(β);∀α, β ∈ [0,∞)

(4) ω−1(α)ω−1(β) ≤ ω−1(αβ);∀α, β ∈ [0,∞), where ω−1 is the function in-
verse of ω.

The following lemma shows that the growth function can be used to give an
upper bound for the norm of a function.

Lemma 1.2. [3] Let ρ be a convex function modular satisfying the ∆2-type con-
dition. Then

||f ||ρ ≤
1

ω−1
(

1
ρ(f)

) whenever f ∈ Lρ.

The next lemma will be of major interest throughout this work.

Lemma 1.3. [6] Let ρ be a function modular satisfying the ∆2-condition and

{fn}n be a sequence in Lρ such that fn
ρ−a.e→ f ∈ Lρ and there exists k > 1 such

that sup
n

ρ(k(fn − f)) < ∞. Then,

lim inf
n→∞

ρ(fn − g) = lim inf
n→∞

ρ(fn − f) + ρ(f − g) for all g ∈ Lρ.

Moreover, we have
ρ(f) ≤ lim inf

n→∞
ρ(fn).

2. AN EQUIVALENT TOPOLOGY

The concept of ρ-a.e. closed, compact sets have been studied extensively in
the sequential case. One of the problem that many authors have found hard to
circumvent is whether these notions are related to a topology. In this section
we will discuss this problem. In particular, we will construct a topology τ for
which the ρ-a.e. compactness is equivalent to the usual compactness for τ. This
is crucial when we try to use Zorn’s lemma.
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From now on, we assume that the modular function ρ is, in addition, σ-finite.
Set

d(f, g) =
∞

∑

k=1

1
2k

1
ρ(1Kk)

ρ
(

|f − g|
1 + |f − g|

1Kk

)

for any f, g ∈ Lρ.

Some basic properties satisfied by d are discussed in the following proposition.

Proposition 2.1. The functional d satisfies the following:

(1) d(f, g) = 0 if and only if f = g ρ-a.e.;

(2) d(f, g) = d(g, f);

(3) d(f, g) ≤ ω(2)
2

(

d(f, h) + d(h, g)
)

;

for any f, g and h in Lρ.

Proof. (1) and (2) are obvious. To prove (3) we only need to recall the inequality

|a + b|
1 + |a + b|

≤ |a|
1 + |a|

+
|b|

1 + |b|

for all positive numbers a, b and use the definition of the growth function ω.
�

Remark 2.1. The functional d is not a distance because of (3). But there are
many mathematical objects which fail the triangle inequality but are very useful
tools. That is the case with d.

In the next proposition, we discuss the relationship between ρ-a.e. convergence
and the convergence for the functional d.

Proposition 2.2. Let ρ be a convex, σ-finite modular satisfying the ∆2-type
condition and {fn}n be a sequence of measurable functions. If {fn}n is ρ-a.e.
convergent to f , then

lim
n→∞

d(fn, f) = 0.

Moreover, if

lim
n→∞

d(fn, f) = 0,
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then there exists a subsequence {fnk}k which converges ρ-a.e. to f.

Proof. Assume that {fn}n ρ-a.e. converges to f. We will show that lim
n→∞

d(fn, f) =

0. Let ε > 0, and choose N ∈ N such that
∞

∑

k=N+1

1
2k < ε. We have

lim
n→∞

d(fn, f) ≤ lim
n→∞

N
∑

k=1

1
2k

1
ρ(1Kk)

ρ
(

|fn − f |
1 + |fn − f |

1Kk

)

+ ε

=
N

∑

k=1

lim
n→∞

1
2k

1
ρ(1Kk)

ρ
(

|fn − f |
1 + |fn − f |

1Kk

)

+ ε.

Since

|fn − f |
1 + |fn − f |

1Kk

ρ−a.e−→ 0 as n →∞

for any k ∈ N and
|fn − f |

1 + |fn − f |
1Kk ≤ 1Kk , from Lebesgue’s Theorem we obtain

lim
n→∞

ρ
( |fn − f |

1 + |fn − f |
1Kk

)

= 0 for every non null integer k. Thus lim
n→∞

d(fn, f) ≤ ε

for each ε > 0 which means that lim
n→∞

d(fn, f) = 0.

Assume now that lim
n→∞

d(fn, f) = 0. For every non null integer k we have

lim
n→∞

ρ
(

|fn − f |
1 + |fn − f |

1Kk

)

= 0.

Thus, there exists a subsequence {f1
n}n of {fn}n such that

|f 1
n − f |

1 + |f1
n − f |

1K1

ρ−a.e−→ 0

and so f 1
n

ρ−a.e−→ f in K1 i.e. lim
n→∞

f 1
n(x) = f(x) whenever x ∈ K1 \ A1 where

A1 ⊂ K1 and ρ(1A1) = 0.

By induction and using a diagonal argument we obtain a subsequence of {fn}n

which converges ρ-a.e. to f. �

Definition 2.1. Let C be a subset of Lρ.
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(a) C is said to be d-closed iff for any sequence {fn}n in C which d-converges
to f, then we have f ∈ C.

(b) C is d-open iff Lρ\C is d-closed.

(c) C is said to be d-sequentially compact if for each sequence {fn}n there

exists a subsequence {fnk}k which d- converges to a point in C.

It is easily seen that the family of all d-open subsets of Lρ form a topology on

Lρ. Furthermore, from proposition (2.2) d-sequentially compact sets and ρ-a.e.

compact sets are identical. On the other hand, even though d satisfies (3) instead
of the triangular inequality, the usual arguments which prove that sequential
compactness and compactness are identical in metric spaces hold in this setting.
We also have d-sequential compactness and d-compactness are identical.

3. TECHNICAL LEMMAS

In the sequel we assume that ρ is a convex, σ-finite modular function satisfying
the ∆2-type condition, C is a convex, ρ-bounded and ρ-a.e. compact subset of the
modular function space Lρ and T : C → C is a ρ-asymptotically nonexpansive

mapping, i.e. there exists a sequence of positive integers {kn}n which converge

to 1 such that for every n ∈ N and f, g ∈ C we have ρ(T nf −T ng) ≤ knρ(f − g).

Lemma 3.1. Under the above assumptions, let {fn}n be a sequence of elements

of C. Consider the functional Φ : C → R defined by Φ(g) = lim sup
n→∞

ρ(fn − g).

Then, for any sequence {gm}m in C which ρ-a.e. converges to g ∈ C we have

Φ(g) ≤ lim inf
m→∞

Φ(gm).

Proof. Since C is ρ-a.e. compact, there exists a subsequence {fφ(n)}n of {fn}n

such that fφ(n)
ρ−a.e−→ f ∈ C and lim

n→∞
ρ(fφ(n) − g) = lim sup

n→∞
ρ(fn − g). Hence

Φ(gm) = lim sup
n→∞

ρ(fn − gm)

≥ lim sup
n→∞

ρ(fφ(n) − gm)

≥ lim inf
n→∞

ρ(fφ(n) − gm).
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Lemma (1.3) implies

lim inf
n→∞

ρ(fφ(n) − gm) = lim inf
n→∞

ρ(fφ(n) − f) + ρ(f − gm).

Thus, Φ(gm) ≥ lim inf
n→∞

ρ(fφ(n) − f) + ρ(f − gm), for any m ≥ 1. Hence

lim inf
m→∞

Φ(gm) ≥ lim inf
n→∞

ρ(fφ(n) − f) + lim inf
m→∞

ρ(f − gm).

Again using lemma (1.3), we have

lim inf
m→∞

ρ(f − gm) = lim inf
m→∞

ρ(gm − g) + ρ(g − f),

which implies

lim inf
m→∞

Φ(gm) ≥ lim inf
n→∞

ρ(fφ(n) − f) + lim inf
m→∞

ρ(gm − g) + ρ(g − f) (I).

On the other hand,

Φ(g) = lim sup
n→∞

ρ(fn − g) = lim
n→∞

ρ(fφ(n) − g) = lim inf
n→∞

ρ(fφ(n) − g)

which implies

Φ(g) = lim inf
n→∞

ρ(fφ(n) − f) + ρ(f − g) (II).

From (I) and (II), it is clear that

Φ(g) ≤ lim inf
m→∞

Φ(gm),

which completes the proof.
�

Denote by = the family of all subsets K of C satisfying the following property:
K is a nonempty, convex and ρ-a.e. closed subset of C such that

f ∈ K implies Ωρ−a.e(f) ⊂ K (3.1)

where Ωρ−a.e(f) = {g ∈ Lρ : g = lim
i→∞

T ni(f) ρ-a.e for some ni ↑ ∞}. Ordering

= by inclusion, there exists a nonempty minimal element H in = which satisfies
(3.1) by using Zorn’s lemma because C is compact for the topology generated by
d.
The following lemma is the counterpart in modular function spaces of lemma
(2.1) in [13] for Banach spaces.
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Lemma 3.2. Under the above assumptions, for each f ∈ H define the functional

rf (g) = lim sup
n→∞

ρ(T nf − g)

for any g ∈ Lρ. Then the functional rf (.) is constant on H and this constant is
independent of f in H.

Proof. Let t > 0 and f ∈ H. Set

Ht(f) = { g ∈ H, rf (g) ≤ t } .

It is easily seen that Ht(f) is convex. We claim that Ht(f) is ρ-a.e. closed.

Indeed, assume that {gm}m ∈ Ht(f) ρ-a.e. converges to g ∈ H. Using Lemma

(3.1), we get

lim sup
n→∞

ρ(T nf − g) ≤ lim inf
m→∞

lim sup
n→∞

ρ(T nf − gm) ≤ t.

Hence g ∈ Ht(f), which clearly implies that Ht(f) is ρ-a.e. closed. Since H is

is ρ-a.e. compact we have that Ht(f) is ρ-a.e. compact. Next, we claim that

Ht(f) satisfies property (3.1). Indeed, let g ∈ Ht(f) and h ∈ Ωρ−a.e(g). We need

to check that h ∈ Ht(f). By definition of Ωρ−a.e(g), there exists an increasing

sequence of integers {ni}i such that T ni(g)
ρ−a.e→ h. Lemma (3.1) implies

rf (h) = lim sup
n→∞

ρ(T nf − h) ≤ lim inf
i→∞

lim sup
n→∞

ρ(T nf − T nig)

≤ lim inf
i→∞

rf
(

T ni(g)
)

≤ lim sup
i→∞

rf
(

T ni(g)
)

≤ lim sup
m→∞

rf
(

Tm(g)
)

≤ lim sup
m→∞

(

lim sup
n→∞

ρ(T nf − Tmg)
)

≤ lim sup
m→∞

(

km lim sup
n→∞

ρ(T n−mf − g)
)

≤ lim sup
m→∞

lim sup
n→∞

ρ(T nf − g) ≤ t.

Hence h ∈ Ht(f) as claimed. The minimality of H implies that Ht(f) is ∅
or equal to H. From this, it is clear that rt(.) is constant on H. In order to
complete the proof of this lemma, we need to prove that rf is independent of f .

Let f, g ∈ H. Since C is ρ-a.e. compact, there exists a subsequence {T ni(g)}i of
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{T n(g)}n which ρ-a.e. converges to h ∈ C. Since H satisfies property (3.1), we

have h ∈ H. Lemma (1.3) implies

ρ(T nf − h) ≤ lim inf
i→∞

ρ(T nf − T nig).

Hence

rf = rf (h) = lim sup
n→∞

ρ(T nf − h)

≤ lim sup
n→∞

lim inf
i→∞

ρ(T nf − T nig)

≤ lim sup
n→∞

lim sup
m→∞

ρ(T nf − Tmg)

≤ lim sup
m→∞

ρ(f − Tmg) = rg(f) = rg,

which obviously implies rg = rf . �

Recall that if ρ satisfies the ∆2-type condition, then ρ-convergence and norm
(i.e. Luxemburg norm) convergence coincide. We have the following result:

Lemma 3.3. Let ρ be a convex modular function satisfying the ∆2-type condition.
Let S be a nonempty, norm-compact subset of Lρ with diamρ(S) > 0. Then there

exists f ∈ conv(S) such that

sup{ρ(g − f) : g ∈ S} < diamρ(S).

Proof. The proof is similar to the classical one known in Banach spaces. Indeed,
since S is compact and ρ is norm continuous, there exist f0, f1 ∈ S such that
ρ(f0 − f1) = diamρ(S). Let S0 be a maximal subset of S such that f0, f1 ∈ S0

and for any f, g ∈ S0, f 6= g, we have ρ(f − g) = diamρ(S). Since S is compact,

S0 must be finite. Write S0 = {f0, f1, f2, ....., fn} and define

h =
f0 + f1 + · · ·+ fn

n + 1
.

Since S is compact, there exists g0 ∈ S such that

ρ(g0 − h) = sup{ρ(g − h) : g ∈ S}.
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On the other hand, using the convexity of ρ, we get

ρ(g0 − h) = ρ

(

k=n
∑

k=0

(

1
n + 1

)

g0 −
k=n
∑

k=0

(

1
n + 1

)

fk

)

≤
k=n
∑

k=0

(

1
n + 1

)

ρ(g0 − fk) ≤ diamρ(S).

If ρ(g0 − h) = diamρ(S), then we must have ρ(g0 − fk) = diamρ(S) , for k =
0, 1, ...., n. This will contradict the maximality of S0. Hence

sup{ρ(g − h) : g ∈ S} = ρ(g0 − h) < diamρ(S).

�

4. MAIN RESULTS

Theorem 4.1. Let ρ be a convex, σ-finite function modular satisfying the ∆2-
type condition and C be a ρ-bounded, ρ-a.e. compact subset of Lρ. Let T : C → C
be an asymptotically nonexpansive mapping. Let H be a nonempty convex subset
of C such that:

(i) if f ∈ H then Ωρ−a.e(f) ⊂ H;

(ii) for each f ∈ H, any subsequence {T ni(f)}i of {T n(f)}n, has a ρ-convergent
subsequence.

Then, T has a fixed point.

Proof. Consider the family F of nonempty ρ-a.e. compact subsets of H which
satisfy property (3.1). F is not empty since H ∈ F . By the previous results, F
has a minimal element. Let K be a minimal element of F . Assume that K has
more than one point, i.e. diamρ(K) > 0. Let f ∈ K. Set

S = Ω||.||(f) = {g ∈ H; T ni(f) ||.||-converges to g for some ni ↑ ∞}.

It is easy to see that S ⊂ K. We claim that S = T (S). Indeed, let g ∈ S. Then

there exists a sequence {T ni(f)}i which ||.||-converges to g. Since T is continuous,

we have T ni+1(f)
||.||→ T (g). By definition of S, we get T (g) ∈ S, i.e. T (S) ⊂ S.

Let us show the other inclusion, i.e. S ⊂ T (S). Let g ∈ S. Again by definition

of S, there exists a sequence {T ni(f)}i which ||.||-converges to g. The sequence
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{T ni−1(f)}i has a norm convergent subsequence, say {T nφ(i)−1(f)}i. Let h be its

||.||-limit. Since T is continuous, we get

T (h) = T ( lim
i→∞

T nφ(i)−1(f)) = lim
i→∞

T nφ(i)(f) = g.

Hence g ∈ T (S), i.e. S ⊂ T (S). So our claim is proved, i.e. T (S) = S.

Next, notice that the assumption (ii) implies that S is norm compact. Lemma

(3.3) implies the existence of f0 ∈ conv(S) ⊂ K such that

sup{ρ(g − f0) : g ∈ S} < diamρ(S). (A)

Let r = sup{ρ(g − f0) : g ∈ S}. Set

D = {h ∈ K; sup
g∈S

ρ(g − h) ≤ r}.

Since f0 ∈ D and ρ is convex, D is a nonempty convex subset of K. We claim that
D = K. Indeed, let us first show that D is ρ-a.e. compact. By the assumption
(ii), it is enough to show that D is ρ-a.e. closed. Let {hn}n be a sequence in D

such that hn
ρ−a.e.−→ h ∈ Lρ. Fix g ∈ S. Since g − hn

ρ−a.e−→ g − h, Lemma (1.3)
implies

ρ(g − h) ≤ lim inf
n→∞

ρ(g − hn)

which yields

ρ(g − h) ≤ lim inf
n→∞

(

sup{ρ(f − hn) : f ∈ S}
)

≤ r.

Hence sup{ρ(h − g) : g ∈ S} ≤ r, i.e. h ∈ D. Next we check that D satisfies

property (3.1). Indeed, let f ∈ D and g ∈ Ωρ−a.e(f). Then there exists a sequence

{T ni(f)} ρ−a.e.−→ g. Using Lemma (1.3) we obtain

ρ(g − h) ≤ lim inf
n→∞

ρ(T ni(f)− h) ≤ lim sup
n→∞

ρ(T nf − h)

for any h ∈ S. Since T (S) = S, there exists a sequence {un}n in S such that

h = T n(un), for any n ≥ 1. Hence

ρ(g − h) ≤ lim sup
n→∞

ρ(T nf − T nun) ≤ lim sup
n→∞

knρ(f − un)

≤ lim sup
n→∞

ρ(f − un) ≤ sup{ρ(f − u) : u ∈ S} ≤ r.
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So sup{ρ(g− h) : h ∈ S} ≤ r which gives g ∈ D. Thus D satisfies property (3.1)
and by minimality of K, we obtain D = K. But

diamρ(D) ≤ r < diamρ(S) ≤ diamρ(K),

which is a contradiction. Therefore, K is reduced to one point. Property (3.1)
will force this point to be a fixed point of T . �

Now we are ready to state and prove the main result of this work.

Theorem 4.2. Let ρ be a convex, ρ is a convex, σ-finite function modular sat-
isfying the ∆2-type condition and C be a convex ρ-bounded and ρ-a.e. compact
subset of Lρ. Let T : C → C be ρ-asymptotically nonexpansive. Then T has a
fixed point.

Proof. Let F be the family of nonempty convex subsets of C which satisfy the
property (3.1). F is not empty since C ∈ F . By Zorn’s lemma, F has a minimal
element. Let H be a minimal element of F . Let us show that H satisfies the
hypothesis of Theorem (4.1). It suffices to check that H satisfies property (ii).

Let r be defined on H as in Lemma (3.2). If r = 0 we have

lim
n→∞

T nf = g

for any f, g ∈ H, which implies (ii). Otherwise, assume that r > 0. Let f ∈ H

such that there exists a sequence {T nif}i which has no norm-convergent subse-

quence. Thus, there exists ε > 0 and a subsequence {T n(k)f}k such that

Sep({T n(k)f}k) = inf{ρ(T n(k)f − T n(k′)f) , k 6= k′} ≥ ε.

Since H is ρ-a.e. compact, there exists f∞ ∈ H such that T n(k)f
ρ−a.e−→ f∞ ∈ H as

k →∞. Without loss of generality, we may assume the existence of

lim
k→∞

ρ(T n(k)f − f∞) = l.

Since lim sup
n→∞

ρ(T nf − f) = r, we choose η > 0 such that η <
ε
2

, and an integer

n0 ≥ 1, such that for all n ≥ n0 we have

ρ(T nf − f) < r + η.
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Fix n ≥ n0. There exists k0 ≥ 1 such that for all k ≥ k0, we have n(k) ≥ n + n0

and

ρ(T nf − T n(k)f) = ρ
(

T nf − T n+(n(k)−n)f
)

= ρ
(

T nf − T n(T n(k)−nf)
)

≤ knρ
(

f − T n(k)−nf
)

< kn(r + η).

Note that if fn
ρ−a.e−→ f and Sep{fn}n ≥ ε, then by Lemma (1.3), we have

ε ≤ lim inf
m→∞

lim inf
n→∞

ρ(fn − fm) ≤ 2 lim inf
n→∞

ρ(fn − f).

Combined with Lemma (1.3), we get

lim inf
n→∞

ρ(fn) = lim inf
n→∞

ρ(fn − f) + ρ(f) ≥ ε
2

+ ρ(f).

In particular, since {T n(k)f − T nf}k is ρ-a.e. convergent to f∞− T nf as k →∞
and satisfies Sep({T n(k)f − T nf}k) ≥ ε, we get

ρ(T nf − f∞) ≤ lim inf
k→∞

ρ(T n(k)f − T nf)− ε
2
.

Hence

ρ(f∞ − T nf) ≤ r + η − ε
2

which implies

r = lim sup
n→∞

ρ(f∞ − T nf) ≤ r + η − ε
2

< r.

This contradiction completes the proof of Theorem 4.2.
�

Assume that Lρ = Lp(Ω, µ) for a σ-finite measure µ. If C is a convex, bounded
and closed subset of Lp for 1 < p < ∞ and T : C → C is asymptotically non-
expansive, it is known that C has a fixed point because Lp is uniformly convex.

However the result does not hold for p = 1 (even for nonexpansive mappings, see

[1]). Since L1 is a modular space, Theorem (4.1) implies the existence of fixed
point if p = 1 when C is ρ-a.e. compact. Thus we can state.

Corollary 4.1. Let (Ω, µ) be as above, C ⊂ L1(Ω, µ) a convex bounded set
which is compact for the topology of local convergence in measure and T : C → C
asymptotically nonexpansive. Then, T has a fixed point.
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Proof. Under the above hypothesis ρ-a.e. compact sets and compact sets in the
topology of local convergence in measure are identical.

�
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