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ABSTRACT
Let ρ be a convex modular function satisfying a ∆2-type condition and Lρ the
corresponding modular space. Assume that C is a ρ-bounded and ρ-a.e compact
subset of Lρ and T : C → C is a k-uniformly Lipschitzian mapping. We prove

that T has a fixed point if k < (Ñ(Lρ))−1/2 where Ñ(Lρ) is a geometrical coeffi-

cient of normal structure. We also show that Ñ(Lρ) < 1 in modular Orlicz spaces
for uniformly convex Orlicz functions.
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INTRODUCTION

The theory of modular spaces was initiated by Nakano [14] in 1950 in connection
with the theory of order spaces and redefined and generalized by Musielak and
Orlicz [13] in 1959. Defining a norm, particular Banach spaces of functions
can be considered. Metric fixed theory for these Banach spaces of functions
has been widely studied (see, for instance, [15]). Another direction is based
on considering an abstractly given functional which controls the growth of the
functions. Even though a metric is not defined, many problems in fixed point
theory for nonexpansive mappings can be reformulated in modular spaces (see,

for instance, [8] and references therein). In this paper, we study the existence
of fixed points for a more general class of mappings: uniformly Lipschitzian
mappings. Fixed point theorems for this class of mappings in Banach spaces
have been studied in [3,4] and in metric spaces in [11,12] (for further information

about this subject, see [2, chapter VIII] and references therein). The main tool

in our approach is the coefficient of normal structure Ñ(Lρ). We prove that
under suitable conditions a k-uniformly Lipschitzian mapping has a fixed point

if k < (Ñ(Lρ))−1/2. In the last section we show a class of modular spaces where

Ñ(Lρ) < 1 and so, the above theorem can be successfully applied.

1. PRELIMINARIES

We start by recording a brief collection of basic concepts and facts of modular
spaces as formulated by Kozlowski. For more details the reader is refered to [7],

[8], [10] and [13].
Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let
P be a δ-ring of subsets of Σ, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ.
Let us assume that there exists an increasing sequence of sets Kn ∈ P such that
Ω =

⋃

Kn. In other words, the family P plays the role of the δ-ring of subsets
of finite measure. By E we denote the linear space of all simple functions with
supports from P . By M we will denote the space of all measurable functions,
i.e. all functions f : Ω → < such that there exists a sequence {gn} ∈ E , |gn| ≤ |f |
and gn(ω) → f(ω) for all ω ∈ Ω. By 1A we denote the characteristic function of
the set A.
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Definition 1.1. A functional ρ : E × Σ → [0,∞] is called a function modu-
lar if

(P1) ρ(0, E) = 0 for any E ∈ Σ,

(P2) ρ(f, E) ≤ ρ(g, E) whenever |f(ω)| ≤ |g(ω)| for any ω ∈ Ω, f, g ∈ E and
E ∈ Σ,

(P3) ρ(f, .) : Σ → [0,∞] is a σ-subadditive measure for every f ∈ E ,

(P4) ρ(α, A) → 0 as α decreases to 0 for every A ∈ P , where ρ(α,A) =

ρ(α1A, A),

(P5) if there exists α > 0 such that ρ(α, A) = 0, then ρ(β, A) = 0 for every
β > 0,

(P6) for any α > 0 ρ(α, .) is order continuous on P , that is ρ(α, An) → 0 if

{An} ∈ P and decreases to ∅.

The definition of ρ is then extended to f ∈M by

ρ(f, E) = sup{ρ(g, E); g ∈ E , |g(ω)| ≤ |f(ω)| ω ∈ Ω}.

A set E is said to be ρ-null if ρ(α,E) = 0 for every α > 0. For the sake of

simplicity we write ρ(f) instead of ρ(f, Ω).

It is easy to see that the functional ρ : M → [0,∞] is a modular because it
satisfies the following properties:

(i) ρ(f) = 0 iff f = 0 ρ-a.e.

(ii) ρ(αf) = ρ(f) for every scalar α with |α| = 1 and f ∈M.

(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α + β = 1, α ≥ 0, β ≥ 0 and f, g ∈M.

In addition, if the following property is satisfied

(iii)’ ρ(αf + βg) ≤ αρ(f) + βρ(g) if α + β = 1 ; α ≥ 0, β ≥ 0 and f, g ∈M,

we say that ρ is a convex modular.

The modular ρ defines a corresponding modular space, i.e the vector space Lρ

given by

Lρ = {f ∈M; ρ(λf) → 0 as λ → 0}.

We can also consider the space Eρ = {f ∈ M; ρ(αf, An) → 0 as n →
∞ for every An ∈ Σ that decreases to ∅ and α > 0}.
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A function modular is said to satisfy the ∆2-condition if sup
n≥1

ρ(2fn, Dk) →

0 as k →∞ whenever {fn}n≥1 ⊂M, Dk ∈ Σ decreases to ∅ and

sup
n≥1

ρ(fn, Dk) → 0 as k →∞. We know (see [10]) that Eρ = Lρ when ρ satisfies

the ∆2-condition. When ρ is convex, the formula

||f ||ρ = inf
{

α > 0; ρ
(

f
α

)

≤ 1
}

definies a norm in the modular space Lρ which is frequently called the Luxem-
burg norm.

Definition 1.2.

(1) The sequence {fn}n ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn −
f) → 0 as n →∞,

(2) The sequence {fn}n ⊂ Lρ is said to be ρ-a.e convergent to f ∈ Lρ if the

set {ω ∈ Ω; fn(ω) 6→ f(ω)} is ρ-null.

(3) The sequence {fn}n ⊂ Lρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n
and m go to ∞,

(4) A subset C of Lρ is called ρ-closed if the ρ-limit of a ρ-convergent sequence
of C always belongs to C.

(5) A subset C of Lρ is called ρ-a.e sequentially closed if the ρ-a.e limit of a
ρ-a.e convergent sequence of C always belongs to C.

(6) A subset C of Lρ is called ρ-a.e sequentially compact if every sequence in
C has a ρ-a.e convergent subsequence in C.

(7) A subset C of Lρ is called ρ-bounded if

δρ(C) = sup{ρ(f − g); f, g ∈ C} < ∞.

Let B be a bounded subset of Lρ. We define the ρ-ball of center f ∈ Lρ and radius

r > 0 by B(f, r) = {g ∈ Lρ, ρ(g− f) ≤ r}. We will denote r(f, B) = sup{ρ(f −
g), g ∈ B}, δ(B) = sup{r(f,B), f ∈ B}, R(B) = inf{r(f, B), f ∈ B}. We
define the admissible hull of B as the intersection of all ρ-ball containing B, i.e:

ad(B) =
⋂

{A : B ⊂ A ⊂ Lρ, where A is a ρ-ball}.



UNIFORMLY LIPSCHITZIAN MAPPINGS IN MODULAR FUNCTION SPACES 5

B is said admissible if ad(B) = B. We define the normal structure coefficient

Ñ(Lρ) of Lρ by

Ñ(Lρ) = sup
{

R(B)
δ(B)

, B is admissible, ρ-bounded and ρ-a.e sequentially compact
}

.

The useful following proposition is easily seen:

Proposition 1.1. Let B be a ρ-bounded subset of Lρ and f ∈ Lρ. Then

(1) r(f, ad(B)) = r(f,B).

(2) δ(ad(B)) = δ(B).

We say that ρ satisfies the ∆2-type condition if there exists K > 0 such that
ρ(2f) ≤ Kρ(f) for all f ∈ Lρ. In general, ∆2-type condition and ∆2-condition
are not equivalent, even though it is obvious that ∆2-type condition implies ∆2-
condition. Assume that ρ is convex and satisfies the ∆2-type condition. We
define a growth function ω by

ω(t) = sup
{

ρ(tf)
ρ(f)

, 0 < ρ(f) < ∞
}

for all 0 ≤ t < ∞.

The following properties of the growth function can be easily seen.

Lemma 1.1. Let ρ be a convex function modular satisfying the ∆2-type condition.
Then the growth funtion ω has the following properties:

(1) ω(t) < ∞ ,∀t ∈ [0,∞)

(2) ω : [0,∞) → [0,∞) is a convex, strictly increasing function. So, it is
continuous.

(3) ω(αβ) ≤ ω(α)ω(β);∀α, β ∈ [0,∞)

(4) ω−1(α)ω−1(β) ≤ ω−1(αβ);∀α, β ∈ [0,∞), where ω−1 is the function in-
verse of ω.

The following lemma shows that the growth function can be used to give an
upper bound for the norm of a function.
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Lemma 1.2. [5] Let ρ be a convex function modular satisfying the ∆2-type con-
dition. Then

||f ||ρ ≤
1

ω−1
(

1
ρ(f)

) whenever f ∈ Lρ.

The following lemma can be found in [7].

Lemma 1.3. Let ρ be a function modular satisfying the ∆2-condition and {fn}n

be a sequence in Lρ such that fn
ρ−a.e→ f ∈ Lρ and there exists k > 1 such that

supn ρ(k(fn − f)) < ∞. Then,

lim inf
n→∞

ρ(fn − g) = lim inf
n→∞

ρ(fn − f) + ρ(f − g) for all g ∈ Lρ.

Lemma 1.4. Let ρ be a modular function satisfying the ∆2-type condition. Let B
be a ρ-a.e sequentially closed and ρ-bounded subset of Lρ. Let {gn}n be a sequence

in B such that gn
ρ−a.e→ g. Then,

(1) ρ(g) ≤ lim infn→∞ ρ(gn).

(2) B(0, r) ∩B is ρ-a.e sequentially closed.

(3) ad(A) ∩B is ρ-a.e sequentially closed, for all A ⊂ Lρ.

Proof. Condition (1) is a straighforward consequence of Lemma 1.3 applied to

the sequence gn
ρ−a.e→ g and the null function. Condition (2) and (3) can be easily

deduced from (1).

2. FIXED POINT FOR UNIFORMLY LIPSCHITZIAN MAPPINGS

The following lemma is the key of our fixed point result.

Lemma 2.1. Let ρ be a modular function satisfying the ∆2-type condition and
B a ρ-bounded and ρ-a.e sequentially compact subset of Lρ. Let {fn}n and {gn}n

be sequences in B. Then, there exists g ∈ ∩∞n=1ad(gj, j ≥ n) ∩B such that

lim sup
n→∞

ρ(g − fn) ≤ lim sup
j→∞

lim sup
n→∞

ρ(gj − fn)

Proof. Let {fn}n and {gn}n be sequences in B. We define θ(h) = lim supn→∞ ρ(h−
fn) for all h ∈ B. Since B is ρ-sequentially compact and ρ-bounded, there ex-

ist a subsequence {gφ(n)}n ⊂ {gn}n such that gφ(n)
ρ−a.e→ g and a subsequence

{fψ(n)}n ⊂ {fn}n such that limn→∞ ρ(fψ(n) − g) = lim supn→∞ ρ(fn − g) and
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fψ(n)
ρ−a.e→ f ∈ B. Since gφ(n) ∈ ad(gj , j ≥ n) ∩ B which is ρ-a.e sequentially

closed (by property (3) of Lemma 1.4) and gφ(n)
ρ−a.e→ g, we obtain g ∈ ad(gj , j ≥

n) ∩ B for all n ≥ 1. We will see that θ(g) ≤ lim sup
j→∞

θ(gj). Indeed, from

Lemma 2.3 we have θ(gj) = lim supn→∞ ρ(fn − gj) ≥ lim infn→∞ ρ(fψ(n) − gj) =

lim infn→∞ ρ(fψ(n) − f) + ρ(f − gj). Thus, again using Lemma 2.3, we obtain

lim sup
j→∞

θ(gj) ≥ lim inf
n→∞

ρ(fψ(n) − f) + lim sup
j→∞

ρ(f − gj)

≥ lim inf
n→∞

ρ(fψ(n) − f) + lim inf
j→∞

ρ(f − gφ(j))

= lim inf
n→∞

ρ(fψ(n) − f) + lim inf
j→∞

ρ(gφ(j) − g) + ρ(f − g).

On the other hand θ(g) = lim supn→∞ ρ(fn − g) = lim infn→∞ ρ(fψ(n) − g) =

lim infn→∞ ρ(fψ(n) − f) + ρ(f − g). Therefore, θ(g) ≤ lim supj→∞ θ(gj).

The following lemma is inspired on [3] where a similar lemma is proved in

reflexive Banach spaces (see also [12, Lemma 6] for a version in metric spaces

with additional properties).

Lemma 2.2. Let ρ be a function modular satisfying the ∆2-type condition and
B an be admissible, ρ-a.e sequentially compact and ρ-bounded subset of Lρ. Let

{fn} be a sequence in B and c a constant such that c > Ñ(Lρ). Then there exists
f ∈ B such that

(1) lim sup
n→∞

ρ(f − fn) ≤ c δ({fn}n).

(2) ρ(f − g) ≤ lim sup
n→∞

ρ(fn − g) for all g ∈ B.

Proof. Let {fn}n be a sequence of B. Denote Am = ad(fj : j ≥ m) ⊂ B and

A =
⋂∞

m=1 Am. Since B is ρ-a.e sequentially compact, there exists a subsequence

of {fn}n ρ − a.e convergent, say to h. It is clear that h ∈ A and so A 6= ∅.
Furthermore, from Proposition 1.1 (2), we have δ(An) ≤ δ({fn}n). On the other

hand, for any f ∈ A and g ∈ B we have ρ(g−f) ≤ r(g, A) ≤ r(g, An) = r(g, {fj :

j ≥ n}) = supj≥n ρ(g − fj). Therefore, ρ(g − f) ≤ lim supn→∞ ρ(g − fn) and (2)

holds for any f ∈ A. We will prove that there exists f ∈ A satisfying (1). Without

loss of generality we may assume that δ({fn}n) > 0. Choose ε > 0 such that
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Ñ(Lρ)δ({fn}n)+ε ≤ c δ({fn}n). By definition of R(An), there exists gn ∈ An such

that r(gn, An) < R(An)+ε ≤ Ñ(Lρ)δ(An)+ε ≤ Ñ(Lρ)δ({fn}n)+ε ≤ c δ({fn}n).

Since r(gn, An) = r(gn, {fj}j≥n) = supj≥n ρ(gn − fj), we have,

lim sup
j→∞

ρ(gn − fj) ≤ c δ({fn}n) (A).

Using Lemma 2.5, there exists f ∈ ∩∞n=1ad(gi, i ≥ n) such that

lim sup
j→∞

ρ(f − fj) ≤ lim sup
n→∞

lim sup
j→∞

ρ(gn − fj) (B).

We will check that f ∈ A. Indeed, for all i, n integers such that i ≥ n we have
gi ∈ Ai ⊂ An. Thus, {gi}i≥n ⊂ An which implies ad(gi, i ≥ n) ⊂ An and f ∈ A.

Using (B) and (A) it is clear that lim supj→∞ ρ(f − fj) ≤ c δ({fn}n).

Theorem 2.1. Let ρ be a convex function modular satisfying the ∆2-condition
and B an admissible, ρ-a.e sequentially compact and ρ-bounded subset of Lρ. Sup-

pose that Ñ(Lρ) < 1 and let T : B → B be a k-uniformly lipschitzian mapping

satisfying k < (Ñ(Lρ))−1/2. Then, T has a fixed point.

Proof. We can assume that k > 1; otherwise T will be nonexpansive and
the existence of a fixed point is a consequence of [8, Theorem 3.5]. Choose a

constant c, Ñ(Lρ) < c < 1 such that 1 < k < c−1/2. Fix f0 ∈ B. By Lemma 2.6,

we can inductively construct a sequence {fj}j≥0 ⊂ B such that for each j ≥ 0

(1) lim supn→∞ ρ(T n(fj)− fj+1) ≤ c δ({T n(fj)}n).

(2) ρ(fj+1 − g) ≤ lim supn→∞ ρ(T n(fj)− g) for all g ∈ B.

Denote Dj = lim supn→∞ ρ(T n(fj)− fj+1) and h = ck2 < 1. For n ≥ m ≥ 0, we
have

ρ(Tmfj − T nfj) ≤ kρ(fj − T n−mfj)

≤ k lim sup
i→∞

ρ(T ifj−1 − T n−mfj)

≤ k2 lim sup
i→∞

ρ(T i−(n−m)fj−1 − fj)

≤ k2Dj−1.



UNIFORMLY LIPSCHITZIAN MAPPINGS IN MODULAR FUNCTION SPACES 9

Since Dj = lim supn→∞ ρ(T n(fj) − fj+1) ≤ c δ({T n(fj)}n), we obtain Dj ≤
c k2 Dj−1 = hDj−1. Thus, Dj ≤ hj D0 and we have

ρ(fj+1 − fj) ≤ ω(2)
(

ρ(fj+1 − T nfj) + ρ(fj − T nfj)
)

≤ ω(2)
(

ρ(fj+1 − T nfj) + lim sup
m→∞

ρ(Tmfj−1 − T nfj)
)

≤ ω(2)
(

ρ(fj+1 − T nfj) + k lim sup
m→∞

ρ(Tm−nfj−1 − fj)
)

≤ ω(2)
(

ρ(fj+1 − T nfj) + kDj−1
)

.

Taking limsup as n →∞, we obtain

ρ(fj+1 − fj) ≤ ω(2)(Dj + kDj−1)

≤ ω(2)(hj + khj−1)D0

≤ ω(2)(h + k)hj−1D0

≤ Ahj, where A = ω(2)
h + k

h
D0.

Hence, there exists an integer N and some β < 1 such that for j > N we have

ρ(fj+1− fj) ≤ βj, which implies
1
βj ≤

1
ρ(fj+1 − fj)

. Using properties (2) and (3)

of Lemma 1.1 we obtain

ω−1
(

1
βj

)

≤ ω−1
(

1
ρ(fj+1 − fj)

)

and
(

ω−1
(

1
β

))j

≤ ω−1
(

1
ρ(fj+1 − fj)

)

.

Therefore, by Lemma 2.2 we have

||fj+1 − fj||ρ ≤
1

ω−1
(

1
ρ(fj+1−fj)

) ≤ 1
(

ω−1( 1
β )

)j .

Hence {fj} is a Cauchy sequence in (Lρ, ||.||ρ), there exists f ∈ Lρ such that

||fj − f ||ρ → 0, because (Lρ, ||.||ρ) is complete. Since under ∆2-condition norm-

convergence and modular-convergence are identical, {fj} is modular convergent

to f. Thus, there exists a subsequence of {fj}j ρ-a.e convergent to f [1, Theorem
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1] and f belongs to B because B is ρ-a.e sequentially closed. We will prove that
f is a fixed point of T . Indeed,

ρ(f − Tf) ≤ ω(3)
(

ρ(f − fj+1) + ρ(fj+1 − T nfj) + ρ(T nfj − Tf)
)

≤ ω(3)
(

ρ(f − fj+1) + ρ(fj+1 − T nfj) + kρ(T n−1fj − f)
)

≤ ω(3)
(

ρ(f − fj+1) + ρ(fj+1 − T nfj)

+kω(2)
(

ρ(T n−1fj − fj+1) + ρ(fj+1 − f)
)

)

.

Taking limsup as n →∞, we have

ρ(f − Tf) ≤ ω(3)
(

ρ(f − fj+1) + Dj + kω(2)
(

Dj + ρ(fj+1 − f)
)

)

.

Now, taking lim as j →∞, we obtain ρ(f − Tf) = 0, i.e. T (f) = f.

3. UNIFORMLY CONVEX MODULAR SPACES

Our goal in this section is to give some classes of modular funtions spaces such

that Ñ(Lρ) < 1. We begin by recalling the definitions of ρ-modulus of uniform

convexity [9].
For any ε and any r > 0, the ρ-modulus of uniform convexity is defined by

δρ(r, ε) = inf
{

1− 1
r
ρ

(

f + g
2

)

; ρ(f) ≤ r, ρ(g) ≤ r, ρ
(

f − g
2

)

≥ rε
}

.

= inf
{

1− 1
r
ρ

(

f +
h
2

)

; ρ(f) ≤ r, ρ(f + h) ≤ r; ρ
(

h
2

)

≥ rε
}

.

This following lemma gives a relationship between Ñ(Lρ) and the ρ-modulus of
uniform convexity.

Lemma 3.1. Let ρ be a convex function modular satisfying ∆2-condition. Then,

Ñ(Lρ) ≤ 1− inf
d>0

δρ(d, γ) for all γ ∈
(

0,
1

ω(2)

)

.

Proof. Let B be an admissible, ρ-bounded and ρ-a.e sequentially compact
subset of Lρ. We know that B is a convex set because it is an intersection
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of ρ-balls which are convex, as a consequence of the convexity of ρ. Denote
d = δ(B) and r = R(B). Let ε ∈ (0, 1). There exist f, g ∈ B such that

ρ(f − g) ≥ εδ(B). Hence ρ
(

f − g
2

)

≥ ρ(f − g)
ω(2)

≥ dε
ω(2)

. Let h ∈ B. We know

that ρ(h − f) ≤ d , ρ(h − g) ≤ d and ρ
(

(h− f)− (h− g)
2

)

≥ dε
ω(2)

. By

definition of δρ

(

d,
ε

ω(2)

)

, we have

ρ
(

h− f + g
2

)

= ρ
(

(h− f) + (h− g)
2

)

≤ d
(

1− δρ

(

d,
ε

ω(2)

))

,

for all h ∈ B. Thus,

r
d
≤ 1− δρ

(

d,
ε

ω(2)

)

.

Therefore,

Ñ(Lρ) ≤ sup
d>0

(

1− δρ

(

d,
ε

ω(2)

))

≤ 1− inf
d>0

δρ

(

d,
ε

ω(2)

)

.

Let Φ : R → R+ is said to be an N -function if Φ is a convex symmetric function
which satisfies:

(1) Φ(0) = 0

(2) Φ is strictly increasing on [0,∞)

(3) lim
u→0

Φ(u)
u

= 0 and lim
u→∞

Φ(u)
u

= ∞.

Let (G, Σ, µ) be a measure space, µ being finite and atomless. Consider the

space L0(G) consisting of all measurable real-valued functions on G, and define

the Orlicz function modular ρ(f, B) =
∫

t∈B
Φ(f(t))dµ(t) for every f ∈ L0(G)
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and B ∈ Σ. The modular function space Lρ is the Orlicz space defined by

Lρ =
{

f ∈ L0(G), ρ(λf) < ∞ for some λ > 0
}

.

If Φ satisfies the ∆2-condition at zero and at infinity i.e: lim sup
u→0

Φ(2u)
Φ(u)

< ∞

and lim sup
u→∞

Φ(2u)
Φ(u)

< ∞, the convex Orlicz modular associated to Φ satisfies the

∆2-type condition. We recall that the function Φ is said to be uniformly convex
[8] if for all ε > 0 there exists δ(ε) ∈ (0, 1) such that:

0 ≤ u and v ≤ ε u implies Φ
(

u + v
2

)

≤ (1− δ(ε))
Φ(u) + Φ(v)

2
.

(Some equivalent definitions can be found in [1]).
The following lemma connects the uniform convexity of Φ and the ρ-modulus of
uniform convexity of the modular.

Lemma 3.2. Let Φ be a uniformly convex, N-function satisfying the ∆2-condition
at zero and at infinity and ρ the Orlicz function modular associated to Φ. Then

there exists ε0 ∈ (0, 1), such that for every ε ∈ (ε0, 1) there exists γ(ε) ∈
(

0, 1
ω(2)

)

with inf
r>0

δρ (r, γ(ε)) > 0.

Proof. We can find ε0 ∈ (0, 1) such that
1− ε
2ε

<
1

ω(2)
for all ε ∈ (ε0, 1),

Choose ε ∈ (ε0, 1) . By definition of uniform convexity, there exists δ(ε) ∈ (0, 1)
such that

0 ≤ u and v ≤ ε u implies Φ
(

u + v
2

)

≤ (1− δ(ε))
Φ(u) + Φ(v)

2
.

Choose γ(ε) > 0 such that
1− ε
2ε

< γ(ε) <
1

ω(2)
. Let r be a positive number and

consider functions f, g ∈ Lρ such that ρ(f) ≤ r , ρ(f + g) ≤ r and ρ
(

h
2

)

≥

rγ(ε).
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We consider the following sets

G1 = {t ∈ G / 0 ≤ f(t) , f(t) < ε(f(t) + h(t))} .

G2 = {t ∈ G / 0 ≤ f(t) , f(t) + h(t) < εf(t)} .

G3 = {t ∈ G / f(t) < 0 , ε(f(t) + h(t)) ≤ f(t)} .

G4 = {t ∈ G / f(t) < 0 , εf(t) ≤ f(t) + h(t)} .

We have

ρ
(

f +
h
2

)

=
∫

G\
Si=4

i=1 Gi

Φ
(

f(t) +
h(t)
2

)

dt +
∫

Si=4
i=1 Gi

Φ
(

f(t) +
h(t)
2

)

dt.

Using the definition of the uniform convexity for the function Φ on G1, G2, G3

and G4 we obtain,

Φ
(

f(t) + (f(t) + h(t))
2

)

≤ (1− δ(ε))
Φ(f(t)) + Φ(f(t) + h(t))

2

for every t ∈ ∪i=4
i=1Gi. Hence, using the convexity of Φ in G \

⋃i=4
i=1 Gi we have

∫

G
Φ

(

f(t) +
h(t)
2

)

dt ≤
∫

G\
Si=4

i=1 Gi

Φ
(

f(t) +
h(t)
2

)

dt +

(1− δ(ε))
∫

Si=4
i=1 Gi

Φ(f(t)) + Φ(f(t) + h(t))
2

dt

≤
∫

G\
Si=4

i=1 Gi

Φ(f(t)) + Φ(f(t) + h(t))
2

dt +

(1− δ(ε))
∫

Si=4
i=1 Gi

Φ(f(t)) + Φ(f(t) + h(t))
2

dt

=
∫

G

Φ(f(t)) + Φ(f(t) + h(t))
2

dt−

δ(ε)
∫

Si=4
i=1 Gi

Φ(f(t)) + Φ(f(t) + h(t))
2

dt

≤ r − δ(ε)
∫

Si=4
i=1 Gi

Φ
(

h(t)
2

)

dt, (I)
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where the last inequality is again a consequence of the convexity and symmetry
of Φ, because

Φ
(

h(t)
2

)

= Φ
(

(f(t) + h(t))− f(t)
2

)

≤ Φ(f(t) + h(t)) + Φ(−f(t))
2

=
Φ(f(t) + h(t)) + Φ(f(t))

2
.

We claim that

Φ
(

h(t)
2

)

≤ 1− ε
2ε

Φ(f(t)) (II)

for every t ∈ G \ ∪i=4
i=1Gi. To prove this inequality we will consider two cases:

First case Assume f(t) ≥ 0. Since t ∈ G \ ∪i=4
i=1Gi we have

−1− ε
2ε

f(t) ≤ h(t)
2

≤ 1− ε
2ε

f(t).

Therefore, by the symmetry and convexity of Φ, we obtain

Φ
(

h(t)
2

)

= Φ
(∣

∣

∣

∣

h(t)
2

∣

∣

∣

∣

)

≤ Φ
(

1− ε
2ε

f(t)
)

≤ 1− ε
2ε

Φ(f(t)).

Second case Assume f(t) < 0. Since t ∈ G \ ∪i=4
i=1Gi we have

−ε− 1
2ε

f(t) <
h(t)
2

<
ε− 1
2ε

f(t)

and we obtain

Φ
(

h(t)
2

)

= Φ
(∣

∣

∣

∣

h(t)
2

∣

∣

∣

∣

)

<
1− ε
2ε

Φ(f)

as above.
Thus we proved the inequality (II). Hence,

∫

G\
Si=4

i=1 Gi

Φ
(

h(t)
2

)

dt ≤ 1− ε
2ε

∫

G\
Si=4

i=1 Gi

Φ(f(t))dt

≤ 1− ε
2ε

r
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and we obtain
∫

Si=4
i=1 Gi

Φ
(

h(t)
2

)

dt =
∫

G
Φ

(

h(t)
2

)

dt−
∫

G\
Si=4

i=1 Gi

Φ
(

h(t)
2

)

dt

≥ rγ(ε)− 1− ε
2ε

r (III).

From inequalities (I) and (III) we obtain

ρ(f +
h
2
) ≤ r

(

1− δ(ε)
(

γ(ε)− 1− ε
2ε

))

and

δ(ε)
(

γ(ε)− 1− ε
2ε

)

≤ 1−
ρ

(

f +
h
2

)

r
.

Thus

δ(ε)
(

γ(ε)− 1− ε
2ε

)

≤ δρ(r, γ(ε)) for every r > 0

and therefore

inf
r>0

δρ(r, γ(ε)) ≥ δ(ε)
(

γ(ε)− 1− ε
2ε

)

> 0.

Using Lemma 3.1 and Lemma 3.2 we obtain the following corollary:

Corollary 3.1 Let Φ be a uniformly convex N-function satisfying the ∆2-
condition at zero and at infinity. Then the modular function space Lρ associated

to Φ satisfies Ñ(Lρ) < 1.

Remark 3.1 It is not difficult to find examples of functions satisfying the
conditions in the above corollary. Besides Φ(t) = |t|p for p > 1 we can ob-

tain some other examples using the following result [6]: Φ is uniformly convex if

lim sup
t→0

Φ′(at)
Φ′(t)

< 1 and lim sup
t→∞

Φ′(at)
Φ′(t)

< 1 for every a ∈ (0, 1). It is easy to check

that Φ(t) = t2 − log(1 + t2) satisfies these conditions.
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