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Klein–Gordon systems with linear coupling

Dynamical equations

ün + V ′(un) + ε

N∑

m=1

Cn mum = 0 n = 1, . . . , N

Coupling examples (ε > 0):

• Elastic attractive coupling:
∑N

m=1 Cn mum = 2un − un+1 − un−1

• Next–neighbor, dipole–dipole repulsive coupling:
∑N

m=1 Cn mum = un+1 + un−1

• Dipolar long–range interaction repulsive coupling:
∑N

m=1 Cn mum =
∑N

m=1
um

r3n m

Notation |u〉 =





u1(t)
...

uN(t)]



 ; |V (u)〉 =





V (u1)
...

V (uN)



 ; |u̇〉 =







du
dt...
duN
dt






; |V ′(u)〉 =







∂V
∂u1...
∂V
∂uN






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Linear stability and Newton operator

• Dynamical equation: |ü〉 + |V ′(u)〉 + εC |u〉 = 0

|u〉 time–reversible and periodic with frequency ωb = 2π
T

• (Linear) stability equation

Nε(u) |ξ〉 ≡ |ξ̈〉 + V ′′(u) · |ξ〉 + εC |ξ〉 = E |ξ〉

Newton operator: Nε

• The Floquet Matrix:

[
{ξn(T )}

{ξ̇n(T )}

]

= FE

[
{ξn(0)}

{ξ̇n(0)}

]

• Floquet multipliers of FE and arguments:

λi = exp(iθi) ; i = 1, . . . , 2N

• Band structure
({θl}, E) with θl ∈ R

• Stability:
The solution |u〉 is linearly stable if there are 2N band intersections or tangent
points with their multiplicity with the axis E = 0.
S Aubry. Physica D, 103:201–250, 1997.
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Example of bands

Cubic potential, attractive elastic coupling, ε = 0.05.
Stable single breather.
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Band structure. Cubic potential. Stacking coupling: ε=0.05
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Bands figures from:
A Alvarez, JFR Archilla, J Cuevas and FR Romero, Dark breathers in Klein-Gordon lattices. Band analysis of their
stability properties. New Journal of Physics 4:72.1-72.19 (2002).
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Bands at the anticontinuous limit (ε = 0)

Stability equation: N0(u) |ξ〉 ≡ |ξ̈〉 + V ′′(u) · |ξ〉 = E |ξ〉 ,

• N − p excited oscillators . Code σn = ±1

ξ̈n + V ′′(un) ξn = E ξn

With E = 0:
Phase mode (periodic): u̇n

Growth mode (unbounded): ∂un
∂ωb

• p rest oscillators. Code σn = 0

ξ̈n + (ω0)
2ξn = E ξn ; ω0 =

√

V ′′(0)

Bands

• Excited oscillators (N − p): Tangent from above (soft) or below (hard)

• Rest oscillators (p): E = ω2
0 − ω2

b(
θ
2π)

2
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Bands at the anticontinuous limit
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Example of bands at ε = 0

Cubic potential, zero coupling
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Example of unstable bands

Dark breather. Cubic potential, attractive coupling ε = 0.004
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Band structure
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Example of stable bands

Dark breather. Cubic potential, repulsive coupling, ε = 0.015
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Degenerate perturbation theory

If N0 is a linear operator with a degenerate eigenvalue E0, with eigenvectors {|vn〉},
which are ortonormal with respect to a scalar product, i.e., 〈vn|vm〉 = δn m, and if
ε Ñ is a perturbation of N0, with ε small; then, to first order in ε, the eigenvalues
of N0 + ε Ñ are E0 + ε λi, with λi being the eigenvalues of the perturbation matrix
Q with elements Qn m = 〈vn|Ñ |vm〉.

Scalar product 〈ξ1|ξ2〉 =
∑N

n=1

∫ T/2

−T/2 ξ
∗
1(t)ξ2(t) dt

Basis N − p elements (excited oscillators):

|n〉 =
1

µ









...
0
u̇0

0
...









; µ =

√
∫ T/2

−T/2

(u̇0)2 dt

Operators N0 |ξ〉 Ñ |ξ〉

Nε(u) |ξ〉 =
︷ ︸︸ ︷

|ξ̈〉 + V ′′(u) · |ξ〉 + ε
︷ ︸︸ ︷(
V ′′′(u) · uε · |ξ〉 + C |ξ〉

)
=

= ( E0︸︷︷︸

0

+ ε λi)|ξ〉
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Demonstration (1)

Deriving with respect to ε, at ε = 0, the dynamical equations we obtain:

|üε〉 + V ′′(u) · |uε〉 + C |u〉 = 0 or N0|uε〉 = −C |u〉 . (1)

C̃n m = 〈n|C|m〉 is C without the columns and rows corresponding to the oscillators at
rest.

〈n|V ′′′(u) · uε|m〉 =

1

µ2

∫ T/2

−T/2

[. . . , 0, u̇0n, 0, . . . ] [. . . , 0, V ′′′(u0)um,ε u̇
0
m, 0, . . . ]

† dt =

δn m

µ2

∫ T/2

−T/2

u̇0 V ′′′(u0)un,ε u̇
0 dt , (2)

with un,ε =
(∂un
∂ε

)

ε=0
. Thus, 〈n|V ′′′(u) · uε · |n〉 = 0 if n 6= m

To calculate the last integral in (2) we will integrate by parts and use that the integral
in a period of the derivative of a periodic function is zero. Besides, the functions un,ε are
periodic as the coefficients of their Fourier series are given by the derivatives with respect
to ε of the Fourier coefficients of un. In the deduction below, all the integral limits are
−T/2 and T/2, and the terms between brackets from integration by parts will be zero.
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Demonstration (2)

The last integral in Eq. (2) becomes:
[
u̇0 un,ε V

′′(u0)
]T/2

−T/2
−

∫

V ′′(u0)u̇0 u̇n,ε dt −

∫

V ′′(u0) ü0 un,ε dt =

−
[
V ′(u0) u̇n,ε,

]T/2

−T/2
+

∫

V ′(u0) üε,n, dt −

∫

V ′′(u0) ü0 un,ε dt =

−

∫

ü0 (ün,ε + V ′′(u0)un,ε)dt (3)

The term between parentheses, is the n component of the lhs of Eq. (1), i.e., it becomes
−
∑

mCn m u0m, where u
0
m = u0, if the oscillator m is excited, and zero otherwise, i.e.,

it is −
∑

m C̃n m u0 = −(
∑

m C̃n m)u
0. Equation (3) becomes:

(
∑

m

C̃n m)

∫

ü0 u0 dt =

(
∑

m

C̃n m)

(
[
u̇0 u0

]T/2

−T/2
−

∫

(u̇0)2 dt

)

= −(
∑

m

C̃n m)µ
2 . (4)

That is, equation (2), leads to:

〈n|V ′′′(u) · uε · |n〉 = −
∑

m

C̃n m at ε = 0 . (5)
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Demonstration (3)

Therefore the diagonal elements of the perturbation matrix Q are

Qn n = −
∑

m

C̃n m + C̃n n = −
∑

∀m6=n

C̃n m = −
∑

∀m6=n

Qn m . (6)

To summarize, the perturbation matrix Q is given by:

Qn m = C̃n m, n 6= m , Qn n = −
∑

∀m6=n

Qn m , (7)

C̃ being the coupling matrix without the p rows and columns corresponding to oscillators
at rest.
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Perturbation matrix. Oscillators in phase

Modified coupling matrix C̃ Identical to C but without the rows and columns
for the rest oscillators

Perturbation matrix Q
Qn m = C̃n m , n 6= m
Qn n = −

∑

∀m6=n Qn m

Example : 3–site breather. Code [ 1, 1, 1]. Elastic attractive interaction

C =







2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
−1 0 · · · 0 −1 2






; C̃ =





2 −1 0
−1 2 −1
0 −1 2



 ;Q =





1 −1 0
−1 2 −1
0 −1 1





Eigenvalues: λ1 = 0, λ2 = 1, λ3 = 3
λ1 = 0: phase mode
λ2, λ3 positive

Conclusion If ε > 0
Unstable for V soft
Stable for V hard
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Perturbation matrix. Oscillators not in phase. V symmetric

Code matrix σ =





σ1
...
σN





Perturbation matrix Q

Qn m =

{
C̃n m if σn = σm

−C̃n m if σn 6= σm

}

n 6= m

Qn n = −
∑

∀m 6=n

Qn m
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Symmetric multibreathers stability theorem

Let be V (un) symmetric and {λi} the eigenvalues of Qn m:
(a) if V (un) is hard and there is any negative value in {ελi} the multibreather at
low coupling will be unstable, and stable otherwise.
(a) if V (un) is soft and there is any positive value in {ελi} the multibreather at low
coupling will be unstable, and stable otherwise.

Example : 3–site breather. Code [−1, 1,−1]. Elastic attractive coupling.

C =







2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
−1 0 · · · 0 −1 2






; C̃ =





2 −1 0
−1 2 −1
0 −1 2



 ; Q =





−1 1 0
1 −2 1
0 1 −1





Eigenvalues: λ1 = 0 (phase mode), λ2 = −1, λ3 = −3 (both negative)
Conclusion: If ε > 0: Stable for V soft, Unstable for V hard.
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Non–symmetric on–site potentials

Symmetry coefficient γ : γ = −

∫ T/2

−T/2

u̇0(t) u̇0(t + T/2) dt

∫ T/2

−T/2

u̇0(t) u̇0(t) dt

Properties of γ
1) γ = γ(ωb) 2) 0 < γ < 1
3) If V is symmetric γ = 1 4) ωb −→ ω0 ⇒ γ −→ 1
5) Numerically: Fourier coefficients 6) Analytically: Morse potential: γ = ωb

Perturbation matrix Q

Qn m =







C̃n m if σn = σm

−γ C̃n m if σn 6= σm






n 6= m

Qn n = −
∑

∀m 6=n

Qn m

Non–symmetric multibreather stability theorem
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The symmetry coefficient γ versus ωb
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Application. 2-site breathers

C =







2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
−1 0 · · · 0 −1 2







Code ± [ 1, 1]: C̃ =

[
2 −1

−1 2

]

; Q =

[
1 −1

−1 1

]

; (λ1, λ2) = (0,+2)

Code ± [−1, 1]: C̃ =

[
2 1
1 2

]

; Q =

[
−γ γ
γ −γ

]

; (λ1, λ2) = (0,−2γ)

±[ 1, 1] Attractive Repulsive
Soft Unstable Stable
Hard Stable Unstable

±[ 1,−1] Attractive Repulsive
Soft Stable Unstable
Hard Unstable Stable

Theorem by Aubry for the symmetric case in:
JL Maŕın. PhD thesis, June 1997.
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Application. 3–site breathers

Code ± [1, 1, 1] :
Attractive coupling Repulsive coupling

Soft Unstable Stable
Hard Stable Unstable

Code ± [−1, 1,−1] :
Attractive coupling Repulsive coupling

Soft Stable Unstable
Hard Unstable Stable

Code ± [1, 1,−1] :
Always unstable
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MST versus exact numerical

Morse potential. Elastic attractive coupling. Code [−1, 1,−1].
Frequency ωb = γ = 0.8.

Eigenvalues E of the Newton operator versus the coupling ε
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Multibreathers

Group of contiguous oscillators excited at ε = 0

In–phase
(wave vector q = 0)

:
Attractive coupling Repulsive coupling

Soft Unstable Stable
Hard Stable Unstable

Out–of–phase
(wave vector q = π)

:
Attractive coupling Repulsive coupling

Soft Stable Unstable
Hard Unstable Stable

Mixed :
Always unstable
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Phonobreathers

All oscillators excited at zero coupling

• With free–ends or fixed–ends boundary conditions: as multibreathers

Coherent with:

I. Daumont, T. Dauxois, and M. Peyrard.
Nonlinearity, 10:617–630, 1997. (Modulational instability).

AM Morgante, M Johansson, G Kopidakis, and S Aubry.
Phys. D, 162:53, 2002. (DNLS)

S Aubry. Physica D, 103:201–250, 1997. (Theorem 9, action properties)

• With periodic boundary conditions: Parity instabilities
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Dark breathers

• Free–ends of fixed–ends: almost as multibreathers:
There is a degenerate 0-eigenvalue of Q ⇒
If the eigenvalues of Q correspond to instability: instability
If the eigenvalues of Q correspond to stability: undefined

• Periodic boundary conditions: Parity instabilities

• Parity instabilities. Example.
Dark breather. Attractive coupling. Soft on-site potential.
Code σ = [ · · · , 1,−1, 0, 1,−1, · · · ]

N odd (N = 5):
σ = [ 1,−1, 0, 1,−1]: stable

N even (N = 6): σ = [ 1,−1, 0, 1,−1, 1]
equivalent to σ = [−1, 0, 1,−1, 1, 1]: unstable.

But with code σ = [ · · · ,−1, 1, 0, 1,−1, · · · ] the conditions are reversed.
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A model with LRI (1)

Twist model for DNA:

B Sánchez-Rey, JFR Archilla, F Palmero, and FR Romero.
Phys. Rev. E, 66:017601–017604, 2002.
Selected by Virtual Journal of Biological Physics Research 4(1), 2002.
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A model with LRI (2)

Dynamical equations

ün + V ′(un) + ε

n+N/2
∑

m=n−N/2

cos[θtw(n−m)]

|n−m|3
um = 0

V (un): Morse potential

Coupling matrix Cn m =
cos[θtw(n−m)]
|n−m|3

Some results

Code θtw = 0 θtw = π

11 Stable Unstable

1 -1 Unstable Stable
101 Stable Stable
111 Stable Unstable
1-1 1 Unstable Stable
11-1 Unstable Stable
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A model with LRI (3)

Dependence on the symmetry coefficient γ = ωb. Code [−1, 1,−1].

Eigenvalues λi of Q versus the twist angle θtw
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Instability induced by the nonlinearity for γ = 0.1 and θtw = 2 rad.
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Multibreathers in the Peyrard–Bishop DNA model

Dynamical equations Planar model

ün + V ′(un) + ε (2un − un−1 − un+1) = 0

V : Morse potential (soft) and attractive coupling

In-phase multibreathers are unstable

Helical model for DNA

• D Hennig and JFR Archilla, Multi-site H-bridge breathers in a DNA–shaped
double strand. Physica Scripta, 69(2):150-160, 2004.

• Variant of:
M. Barbi, S. Cocco and M. Peyrard, Phys. Lett. A 253, 358 (1999). And
continuations.
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A helical DNA–like model

l 0
+l n,

1

d
0
+d

n+1

d
0

θ
0

l
0

l0 +l
n,2
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Multibreathers in the helical DNA–like model

Effective repulsive coupling

Linear equations

r̈n = −ω2
0 rn − ε sin2(

θ0
2
) (2 rn + rn+1 + rn−1)− ε sin(

θ0
2
) cos(

θ0
2
) d0 (αn+1 − αn−1) ,

Stable in–phase multibreathers

The helical shape supports in–phase, stable multibreathers
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Generalization

Hamiltonian H =
∑

n

(
1
2mn u̇

2
n + Vn(un)

)
+ εW (u)

Dynamical equations mn ün + V ′
n(un) + ε

∂W (u)
∂un

= 0
Vn(un) heterogeneous
multiple wells, etc

Given periodic solution at ε = 0 : u0 =





u01
...
u0N





u0n determined by
n, well, phase
(non time–reversible)

Basis elements : |n〉 = 1
µn









...
0
u̇0n
0
...









; µn =
√
∫ T/2

−T/2(u̇
0
n)

2dt

Perturbation matrix

Qn m =
1

µn µm

∫ T/2

−T/2

u̇0n
∂2W (u0)

∂un ∂um
u̇0m d t , n 6= m ; Qn n = −

∑

∀m6=n

µm

µn
Qn m

Generalized multibreathers stability theorem
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Conclusions

1 A theory for calculating the stability of any multibreather in any Klein–Gordon
system at (relatively) low coupling

2 For (relatively) simple systems is very simple

3 For complex systems is (relatively) complex

4 Application to a number of systems

2–site breathers 3–site breathers
Multibreathers Phonobreathers
Dark breathers Parity instabilities
Systems with LRI Nonlinear instabilities

5 Potential consequences for helical DNA models
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