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Klein—Gordon systems with linear coupling

Dynamical equations

Coupling examples (¢ > 0):

N
i, + V'(up,) +5ZCnmum =0 n=1,...,N

m=1

e [lastic attractive coupling: Z%ﬂ CrmUm = 2Up — Upgq — Up—1

e Next—neighbor, dipole—dipole repulsive coupling: Zgzl ChrmUm = Upt1 + Up—1

e Dipolar long-range interaction repulsive coupling: 2%21 Crmlm =
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Linear stability and Newton operator
e Dynamical equation: |i) + |V'(u)) + eC |u) = 0
lu) time-reversible and periodic with frequency wy, = QTW
e (Linear) stability equation
No(w)[€) = 1€) + V'(w) - [§) + £ C1e) = )

Newton operator: N-

] =% Loy

e Floquet multipliers of Fr and arguments:

)\Z:exp(lﬁz) ; ZIl,,ZN

e The Floquet Matrix: [

e Band structure

<{(91}, FE) with 6, R

e Stability:
The solution |u) is linearly stable if there are 2N band intersections or tangent
points with their multiplicity with the axis E = 0.
S Aubry. Physica D, 103:201-250, 1997.
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Example of bands

Cubic potential, attractive elastic coupling, € = 0.05.
Stable single breather.

Band structure. Cubic potential. Stacking coupling:€=0.05
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Arguments 0 of the Floquet eigenvalues

Bands figures from:
A Alvarez, JFR Archilla, J Cuevas and FR Romero, Dark breathers in Klein-Gordon lattices. Band analysis of their
stability properties. New Journal of Physics 4:72.1-72.19 (2002).
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Bands at the anticontinuous limit (¢ = 0)

Stability equation: Ny(u)|&) = [£) + V(u)-[£) = E|&),
e NV —p excited oscillators . Code o, = £1

én + Vl/(“n) &n= F&,
With F = 0:
Phase mode (periodic): 1,

Growth mode (unbounded): Ou

(%Jb

e p rest oscillators. Code o, =0

&+ (W)= E& ; wo=V"(0)

Bands

e Excited oscillators (N — p):  Tangent from above (soft) or below (hard)

e Rest oscillators (p):  FE = wj — w%(%)Q
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Bands at the anticontinuous limit

Soft Hard

---- Rest oscillators —— Excited oscillators
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Example of bands at € =0

Cubic potential, zero coupling
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Example of unstable bands

Dark breather. Cubic potential, attractive coupling € = 0.004

Band structure
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8 JFR Archilla, University of Portsmouth, November 2013



Example of stable bands

Dark breather. Cubic potential, repulsive coupling, € = 0.015
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Degenerate perturbation theory

If Ny is a linear operator with a degenerate eigenvalue Ey, with eigenvectors {|v,)},
which are ortonormal with respect to a scalar product, i.e., (vV,|vy) = 0pm, and if
e N is a perturbation of Ny, with € small; then, to first order in €, the eigenvalues
of No + e N are Ey +¢ \;, with \; being the eigenvalues of the perturbation matriz
Q with elements Qnm = (Vn]N|vm).

Scalar product (£]&) = > 1fT:¢32 t) dt

Basis N —p elements (excited oscﬂlators).

Operators j\/}ﬂ@ _/\7)|§>
Nw)]€) = 18 + V@) 18 +¢ TV"(@w) -w - 6) + Cl8)) =
= (B +eM)lE)
0
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Demonstration (1)
Deriving with respect to €, at € = 0, the dynamical equations we obtain:
.y + V'(u) - |us) + Clu) =0 or Nolu.) = —C'|u). (1)

Crm = (n|C|m) is C without the columns and rows corresponding to the oscillators at
rest.

(n|V"(u) - uclm) =

T/2
—/ .,0,42,0,...] [0, V") up e ul,0,. .. ]Tdt =
T/2
5 T/2
= / W V" (u?) w0’ dt (2)
X ~T/2

with u, . = (%)620. Thus, (n|V"(u) -u.-|n) =0if n #m
To calculate the last integral in (2) we will integrate by parts and use that the integral
in a period of the derivative of a periodic function is zero. Besides, the functions u,, . are
periodic as the coefficients of their Fourier series are given by the derivatives with respect
to € of the Fourier coefficients of u,. In the deduction below, all the integral limits are
—T/2 and T'/2, and the terms between brackets from integration by parts will be zero.
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Demonstration (2)
The last integral in Eq. (2) becomes:

[uoumg‘/"(uo)]i/ﬁp — / V" (u)i’ i, . dt — /V”( Nidu, . dt =

/ 0y - T/2 / 0\ - /) B

_[V(u)un,g,]_T/Q+/V(u)u5,n,d /V( il u, . dt =
— / i (e + V" (u") . )dt (3)

The term between parentheses, is the n component of the lhs of Eq. (1), i.e., it becomes
— 3 Cpmul,, where u), = u’, if the oscillator m is excited, and zero otherwise, 1.e.,

itis — > Chmu’ = —(32 Chpm)u. Equation (3) becomes:

(Zénm>/u0u0dt _
G ([, - [apar) - (3 Cumli ()

That is, equatlon (2), leads to:
(V" () ue-|n) = =) Cpm at & =0. (5)
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Demonstration (3)

Therefore the diagonal elements of the perturbation matrix ¢) are

V' m#n YV m#n

To summarize, the perturbation matrix () is given by:

Qnm — énm: n?é m- an - Z Qnm: <7>

C being the coupling matrix without the p rows and columns corresponding to oscillators
at rest.
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Perturbation matrix. Oscillators in phase

Modified coupling matrix C'  Identical to C' but without the rows and columns
for the rest oscillators

~

Perturbation matrix @) Qnm = Cum , nFm
nn.o — va#n Cnm
Example : 3-site breather. Code [ 1,1,1].  Elastic attractive interaction
—? —; _(1) o O _(1) ) 2 =1 0] T 1 -1 0]
C=| 7. . .. . |:¢=]-1 2-1[;@=|-1 2-1
_—1 0 ... 0 —1 2_ L 0 —1 2_ | 0 —1 1_

FEigenvalues: A =0, Ao =1, A3 =3
A1 = 0: phase mode
Ao, A3 positive

Unstable for V' soft

Conclusion If ¢ > 0 Stable for V' hard
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Perturbation matrix. Oscillators not in phase. V' symmetric

01
Code matrix o =

ON

Perturbation matrix ()
Qnm — { ~ 1 ’ ? } n 7é m
— if
an - Qnm
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Symmetric multibreathers stability theorem

Let be V(u,) symmetric and {\;} the eigenvalues of Q-

(a) if V(uy,) is hard and there is any negative value in {e\;} the multibreather at
low coupling will be unstable, and stable otherwise.

(a) if V(u,) is soft and there is any positive value in {e\;} the multibreather at low
coupling wrll be unstable, and stable otherwise.

Example :  3-site breather.  Code [—1,1,—1]. Elastic attractive coupling.

_? _; _(1)00 _(1) [ 2-1 0] 1 1 0]
C=1. .. .. ... .. ... .. =1 2-11;@=| 1-21
1 0. 01 2 0 -1 2] 0 1 -1

Eigenvalues: A\; = 0 (phase mode), Ay = —1, A3 = —3 (both negative)
Conclusion: Ife > 0: Stable for V' soft, Unstable for V' hard.
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Non—symmetric on-site potentials

T/2
/ w(t) w’(t+T/2) dt
Symmetry coefficient v: v = — —1/2 73
/ a () al(t) dt
g,
Properties of v
1) v = v(wy) 2) 0<y<1
3) If V is symmetric v =1 4) wp—wy = v—1

5) Numerically: Fourier coefficients 6)  Analytically: Morse potential: v = wy,

Perturbation matrix ()
Qnm — n # m

an - Z Qnm

Non—symmetric multibreather stability theorem
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The symmetry coefhicient v versus wy,

Soft Hard

1
n 3 _ 12,1314
e Vi) = Jeocu -1 V) T g

Rest frequency wy =1
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Application. 2-site breathers

2 =1 0-.- 0 —1]
c= |
=1 - O =1 2]
Code £[1,1]: C = -1 Q= bl ; (A1, A2) = (0,42)
—1 2 —1 1
Code £[-1,1 C=| 22 -Qz__7 T (g, he) = (0, —29)
) * 1 2 9 I /y _fy ) Y 9
+[1, 1] | Attractive | Repulsive | | 4|1, —1] | Attractive | Repulsive
Soft | Unstable | Stable Soft Stable | Unstable
Hard Stable | Unstable Hard Unstable | Stable

Theorem by Aubry for the symmetric case in:

JL Marin. PhD thesis, June 1997.

19
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Application. 3-site breathers

Attractive coupling | Repulsive coupling

Code £ [1,1, 1] ; Soft Unstable Stable
Hard Stable Unstable
Attractive coupling | Repulsive coupling
Code £ [—1,1,—1] : Soft Stable Unstable
Hard Unstable Stable
Code == i, 1, =1 Always unstable
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MST versus exact numerical

Morse potential. Elastic attractive coupling. Code [—1,1, —1].
Frequency wy, = v = 0.8.

Eigenvalues F of the Newton operator versus the coupling

+ Numerical. ———— Symmetric MST. —— Non-symmetric MST
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Multibreathers

Group of contiguous oscillators excited at € = 0

Attractive coupling | Repulsive coupling

Soft Unstable Stable
Hard Stable Unstable

In—phase
(wave vector ¢ = 0)

Attractive coupling | Repulsive coupling

Soft Stable Unstable
Hard Unstable Stable

Out—of—phase
(wave vector ¢ = )

Mixed

Always unstable
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Phonobreathers

All oscillators excited at zero coupling

e With free—ends or fixed—ends boundary conditions: as multibreathers
Coherent with:

[. Daumont, T. Dauxois, and M. Peyrard.
Nonlinearity, 10:617-630, 1997. (Modulational instability).

AM Morgante, M Johansson, G Kopidakis, and S Aubry.
Phys. D, 162:53, 2002. (DNLS)

S Aubry. Physica D, 103:201-250, 1997. (Theorem 9, action properties)

e With periodic boundary conditions: = Parity instabilities
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Dark breathers

e Free—ends of fixed—ends: almost as multibreathers:
There is a degenerate O-eigenvalue of () =
If the eigenvalues of () correspond to instability: instability
If the eigenvalues of () correspond to stability: undefined

e Periodic boundary conditions: Parity instabilities

e Parity instabilities. Example.
Dark breather. Attractive coupling.  Soft on-site potential.
Codeo=[---,1,—1,0,1,—1,---]

N odd (N =5):
oc=[1,-1,0,1,—1]: stable

N even (N =6): c=[1,—1,0,1,—1,1]
equivalent to o = [—1,0,1, —1,1, 1]: unstable.

But with code 0 =[---,—1,1,0,1, —1,- - -] the conditions are reversed.
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A model with LRI (1)

Twist model for DNA:

B Sanchez-Rey, JER Archilla, F Palmero, and FR Romero.
Phys. Rev. E, 66:017601-017604, 2002.
Selected by Virtual Journal of Biological Physics Research 4(1), 2002.
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A model with LRI (2)

Dynamical equations

V(u,): Morse potential

Coupling matrix

Some results

26

n+N/2 [9 ( )]
. , cos|Bp,(m — m
iy, + V'(uy) + € Z e U, = 0
m=n—N/2
o= o8|y (n —Sm)]
[n —m|
Code Qtw = ( Qtw = T
11 Stable | Unstable
1 -1 | Unstable| Stable
101 | Stable Stable
111 | Stable | Unstable
1-1 1 | Unstable| Stable
11-1 | Unstable | Stable
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A model with LRI (3)
Dependence on the symmetry coefficient v = wy,. Code [—1,1, —1].

Eigenvalues \; of () versus the twist angle 6y,

— Yy=wp=1 ——y=wp, =08 - y=w,=0.1
Instability induced by the nonlinearity for v = 0.1 and 6;,, = 2rad.
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Multibreathers in the Peyrard-Bishop DNA model

Dynamical equations Planar model

iy + V() + € (2up — Up—1 — Upy1) =0

V. Morse potential (soft) and attractive coupling

In-phase multibreathers are unstable

Helical model for DNA

e D Hennig and JFR Archilla, Multi-site H-bridge breathers in a DNA-shaped
double strand. Physica Scripta, 69(2):150-160, 2004.

e Variant of:
M. Barbi, S. Cocco and M. Peyrard, Phys. Lett. A 253, 358 (1999). And

continuations.
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A helical DNA-like model
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Multibreathers in the helical DNA-like model

Effective repulsive coupling

Linear equations

0 0
Py = —wg Ty — & Sin2(§0) (27, + i1 +Tho1) — € Sil’l(;o) COS<§O> do (a1 — Qp1)

Stable in—phase multibreathers
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The helical shape supports in—phase, stable multibreathers
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(Generalization

Hamiltonian H =Y (3m,d + V,(u,)) + ¢ W(u)

° ° .o n n h

Dynamical equations m,, i, + V/(u,) + 802/—11@ =0 Zéﬁigle isﬁzgiﬁsous
[ uf | uY determined by

Given periodic solution at e =0: «'= | : n, well, phase
| uy | (non time-reversible)

1 y T/
. . L -0 . . 2 /.
Basis elements : |n) = ™ ’Lgn LUy = \/f_T/2(ug)2dt

Perturbation matrix

| T/2 2 0 i
i = / uan(u)uO dt, n#m; Q"”:_Z M_Qnm
L

_Mn,um —T/2 " Ouy Ouyy,

Generalized multibreathers stability theorem
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Conclusions

1

A theory for calculating the stability of any multibreather in any Klein—Gordon
system at (relatively) low coupling

For (relatively) simple systems is very simple
For complex systems is (relatively) complex

Application to a number of systems

2-site breathers 3-site breathers
Multibreathers Phonobreathers

Dark breathers Parity instabilities
Systems with LRI Nonlinear instabilities

Potential consequences for helical DNA models
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