
Two strategies for multimodal fusion
Guillermo Pérez
University of Seville

Palos de la Frontera s/n
41004 Sevilla. Spain

+34955056614

gperez@us.es

Gabriel Amores
University of Seville

Palos de la Frontera s/n
41004 Sevilla. Spain

+34954551549

jgabriel@us.es

Pilar Manchón
University of Seville

Palos de la Frontera s/n
41004 Sevilla. Spain

+34955056614

pmanchon@us.es

ABSTRACT
This paper describes our transition from a speech-only dialogue
system to a multimodal one. Our description focuses on the fusion
of input modalities coming from different channels.
Two strategies have been implemented for comparison purposes:
the first solution is largely based on Johnston’s work [Johnston et
al. 1997, Johnston 1998], and involves modifying our parser to
cope with simultaneous multimodal inputs, and to include
temporal constraints at unification level. The second
implementation proposes an original solution to the problem, and
involves combining inputs coming from different multimodal
channels at dialogue level. This solution is based on an
implementation of the ISU approach [Traum et al. 1999, Amores
et al. 2001].
These two strategies have been implemented in an Information-
State-Update-based system, combining both speech and graphical
inputs. A multimodal “Smart House” scenario where the user
interacts with the system using a microphone and a touch-screen
has been chosen.
The paper includes a high-level description of the algorithms
implemented and concludes with a theoretical analysis of the
advantages and drawbacks of both approaches.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and presentation]: User
Interfaces - Theory and methods, User interface management
systems, Voice I/O.

General Terms
Algorithms, Performance, Theory.

Keywords
Multimodality, fusion.

1. INTRODUCTION
Multimodal interfaces allow for more flexible and natural
interactions between human users and computer systems. They
benefit from a variety of communication channels such as speech,
text, gesture, handwriting, etc.
Multimodal systems have been largely studied since the
appearance of the “Put-That-There” system [Bolt, 1980]. Oviatt´s
results [Oviatt et al. 1997] showed the potential gain of
multimodal systems compared to uni-modal ones in terms of user
preferences and the possibility of mutual dissambiguation.

The fusion of multimodal inputs has also evolved since Bolt’s
proposal [Bolt 1980], which suffered from lack of generality,
defining rules that could only apply to speech-driven systems.
Johnston proposed a new aproach [Johnston 1998] using a
unification based multidimensional parsing of typed feature
structures that partially overcame the limitations previously
mentioned.
Johnston himself [Johnston et al. 2000] found that this solution
could be improved both at parsing level, because of its inherent
computational complexity, and at natural language understanding
level because it did not allow a tight-coupling of parsing and input
recognition (speech or gesture). He proposed an alternative
approach using finite-state multimodal grammars.
From our point of view this last approach can be improved
significantly with a new approach, fusing multimodal inputs not at
grammar level, but at dialogue level and within a richer (non-
finite-state) model of dialogue context: the Information State
Update (ISU) approach [Traum et al. 1999].
Our system can be described as a collaborative dialogue manager
linked to a Natural Language Understanding Module, which
allows dialogues driven by the semantic information provided by
the user and by the dialogue expectations generated by the dialgue
manager.
The kernel of our system is then composed by :

- A Natural Language Understanding (NLU)
module: which is in charge of the lexical and
syntactic analysis and produces the Information
States..

- A Dialogue Manager which manipulates
Information States (or Dialogue Moves) through
the application of dialogue update rules.

The Information States that we have configured for this scenario
are based on the DTAC protocol [Siridus Deliverable 3.2,
Quesada et al. 2000], A DTAC consists of a feature-value
structure with four main features: DMOVE, TYPE, ARG and
CONT. The following figure illustrates the DTAC obtained for
the command “Turn on the kitchen light” in our scenario:

TURN ON THE KITCHEN LIGHT

DMOVE: specifyCommand

TYPE: swdCommand

ARG: swdDevice

CONT:

swdDevice:

DMOVE: specifyParameter

TYPE: swdDevice

CONT: kitchen

FIGURE 1

More examples of Information States applied to the Smart House
Scenario using the DTAC protocol can be found in [Quesada et
al. 2001].

Dialogue Update Rules take the following form in our system:
(RuleID: MAKECALL;

 PriorityLevel: 15;

 TriggeringCondition:

 (DMOVE:specifyCommand,TYPE:MakeCall);

 DeclareExpectations: {

 Dest <= (DMOVE:specifyParameter,TYPE:Name|PhoneNumber);

 }

 SetExpectations: {

 Confirm <= (DMOVE:answerYN);

 }

 ActionsExpectations: {

 [Dest] => {

 ExecuteDMFunction(MakeCallDest);

 }

 [Confirm] => {

 ExecuteDMFunction(MakeCallDisam);

 }

 PostActions: {

 @if ((@is-MAKECALL.Confirm.TYPE == "YES") {

 ExecuteDMFunction(MakeCallDest);

 }

 }

 }

)

The item “Triggering Conditions” describes the Dialogue Move
(Dmove) that must arrive for the rule to be activated.

“DeclareExpectations” defines additional information needed for
the rule to be fulfilled. This information could have been provided
previously in the dialogue history, or during the same interaction.
The “SetExpectations” section defines additional Dialogue Moves
(DMoves) needed to successfully execute the rule, such as an
explicit confirmation before executing a command.
As its name indicates, “ActionExpectations” defines the actions to
be carried out when either the “DeclareExpectations” have not
been fulfilled by the current input nor within the Dialogue
History, or when some “SetExpectations” have been defined.
Finally the “PostActions” section describes what should be done
once the rule is active and all the expectations have been fulfilled.
The whole system kernel has been wrapped as an OAA [Martin el
al. 1999] agent and used to provide dialogue management services
within different scenarios [Quesada et al. 2001, Quesada et al.
2000]
Section two describes the steps needed to move from a speech-
only dialogue system to our new multimodal one.
Section three gives an overview on the current status of the
project and describes the agents already implemented.
Section four deals with two strategies implemented to fuse
multimodal inputs: a first one using the unification module of our
parser, and a second one using our implementation of the ISU
approach and the dialogue expectations generated by the dialogue
manager.
In section five both strategies are compared.
Section six gives an example of how these strategies could be
used for managing a multimodal scientific visualization software.
Sections seven and eight summarize the conclusions and future
work.

2. From speech-only to multimodal
interaction
Before any further considerations, some preliminary steps had to
be taken in order to make the system work multimodally.
The first step involved moving from a synchronous, system-
driven, turn taking approach to an asynchrounous, mixed-
initiative model. We faced this evolution by means of an
intermediate (input pool) layer whose role is to store all inputs
coming from the user at any time and make them available to the
system when requested. The input pool was implemented as an
independent OAA agent.
The second step involved modifying the GUI interface [Quesada
et al. 2001], which was originally just a floor plan representation
of the house designed to configure the distribution of devices and
functionalities. The new extended version of the GUI allows the
user to refer to parts of the house by clicking on them with the
pen.
The third step was to make the speech-only input pool a
multimodal input pool. This goal was achieved by allowing
different kinds of inputs and storing them in a simple FIFO queue
(see fig.2). Namely, the multimodal input pool accepts two kinds
of inputs:

• SPEECH, including the following fields: init_time,
end_time, sentece_score, list[word. word_score].

• CLICKs, including the icon and time fields.

Multimodal Input Pool

Channel 1 Channel 2

List of inputs with modality and temporal
information

DIALOGUE MANAGER

Asynchronous

FIFO Queue

FIGURE 2

For multimodal information rendering we have implemented at
this stage a basic heuristic-based presentation layer which is out
of the scope of this paper.
A global view of how the system interacts with the user is then as
follows (fig. 3):

Dialogue Manager NLU Module

Lexical and
Grammatical

Analysis

Speech Recognition

User Input

System Output

User

Text To Speech

Voice

Speech

Multimodal Input Pool

Graphical Inteface

Click

User
Input

Presentation Layer

System
Input

FIGURE 3

3. Current Implementation Status
As mentioned above, we are applying our system to a Smart
House scenario. Four specific agents connected through the OAA
facilitator have been added:

- Home Setup: This agent allows the installation of
new devices and their configuration.

- Action Manager: This agent sends the actual
commands which turn on/off the devices.

- Knowledge manager: This agent contains the
structure and general ontology of the house.

- Display Agent: An agent which displays the system
output graphically.

The last agent has been especially developed for the new
multimodal architecture, and acts as an alternative output
modality to the TTS.
The first three agents were already implemented and described
elsewhere [Quesada et al. 2001]. Nevertheless further
improvements have been made for the following agents:

- The Home Setup now allows the user to click on the
icons (as mentioned in section 2)
- The Knowledge Manager is now linked with OWL
using RDQL queries (http://www.w3.org/2004/OWL/).

For further information on these new features, please refer to the
TALK project deliverable 2.1 [Milward et al. 2005 –to appear-].
The user interfaces with the system by means of a Tablet PC using
both speech an the Tablet PC pen as input modalities, and gets
feedback by speech (TTS) and graphically from the system.
In the screenshot below (fig. 4) we can appreciate the Display
Agent, the Home Setup and the TTS Agent, which is actually an
OAA wrapper for the Microsoft animated agent
(http://www.microsoft.com/msagent/default.asp).

TTS Agent Home Setup Display Agent

Figure 4

We would like to mention that as a part of the system design we
are currently carrying out a set of Wizard of Oz experiments with
disabled people. These experiments will hopefully help us to
better identify the user preferences and improve our interfaces and
the system. overall A detailed description of the platform used for
these experiments can be found in [Manchón et al. 2005]

4. Multimodal fusion: two strategies
4.1 Strategy 1
The first strategy implemented follows Johnston’s proposal
[Johnston et al. 1997, Johnston 1998], by using a unification
based parser and including modality and temporal constraints at
unification level. Our implementation differs from Johnston´s in
that we add a higher level of flexibility.

The main motivation behind this strategy is that multimodality is
conceived of as a single communicative act between two
participants, and as such should be treated by a single grammar
which is capable of accepting input coming from different
modalities. As expected, our system permits that the
communicative act may range from speech-only to clicks-only or
hybrid inputs, and all are considered equal as far as the grammar
is concerned. Obviously, as described below, this is an advantage
as long as we consider single-task interactions and not multiple
task interactions. The pragmatic ambiguity which may result in
multimodal multi-tasking cannot be resolved by a single grammar.
Graphically, this strategy fuses inputs at our NLU module (fig. 5):

Dialogue Manager NLU Module

Lexical and
Grammatical

Analysis

Speech Recognition

User Input

System Output

User

Text To Speech

Voice

Speech

Multimodal Input Pool

Graphical Inteface

Click

User
Input

Presentation Layer

System
Input

Multimodal Fusion

FIGURE 5

We use our own lexical and grammatical analyser [Quesada et al.
1995, Amores et al., 2000] where each input is described by a set
of feature-value pairs. When the parser receives an input sentece
(either speech-only, click-only or mixed), it calls the lexical
analyser adding three new ad-hoc feature-value pairs:
MODALITY, TIME_INIT and TIME_END.
These features are then used in conjunction with a set of logical
operators to define complex expressions in order to enforce
modality and temporal constraints.
Imagine that we want to define a grammar rule for an input as
“switch on the light”, where light can be either specified by voice
or clicked. Imagine also that we know that when using the mixed
modality input (that is to say: when clicking on the light icon,
actually the user clicks before saying “switch on”.
In this case, we could specify a rule for the voice only inputs
(therefore with natural command + parameter order), and another
one that only applies to mixed inputs where we accept an inverse
order parameter + command.
The unification rule will look like the following one:

(Rule 1 : Command -> CommandOn DeviceSpecifier)
 { @up = @self-1;}
(Rule 2 : Command -> DeviceSpecifier CommandOn)
 @up.DeviceSpecifier =a @self-1;

 @if((@self-1.MODALITY == CLICK) && (@self-
2.MODALITY == VOICE))
 @then {
 @if ((@self-1.TIME_INIT - @self-2.TIME_INIT <= 5) &&
(@self-1.TIME_INIT - @self-2.TIME_INIT <= -5))
 @then { @break();}
 @else { @up.MODALITY =a [VOICE,CLICK];

 @if((@self-1.TIME_INIT <= @self-2.TIME_INIT))
@then { @up.TIME_INIT =a @self-
1.TIME_INIT;}
@else { @up.TIME_INIT =a @self-
2.TIME_INIT;}

@if((@self-1.TIME_END >= @self-2.TIME_END))
@then { @up.TIME_END =a @self-
1.TIME_END;}
@else { @up.TIME_END =a @self-
2.TIME_END;}

}
 }
 @else {
 @break();
 }
}
Remark that, in addition to the modality constraint, we have
defined an overlap timeframe (5 time units) within which this
inputs have to occur. These timeframes could be configured
independently (rule by rule) if our data was accurate enough.
These rules describe under what conditions the right-hand
symbols can unify and, if the conditions are met, how the
unification has to be done. Notice that we are not using only
temporal data as subcategorization edges but actually letting the
user configure the constraints case by case.
However we feel that this flexibility is not always needed, so we
have implemented a set of macros to be used at unification level
that, from our point of view, cover a number of cases:

1) @assign_modality(@self-1,@self-2,@self-n)
a. check if the modality of all the constituents is

the same, otherwise, assign
MODALITY:[MIXED] to the mother node.

2) @assign_time_init(@self-1,@self-2,@self-n)
a. Get the lowest time init and assign it to the

mother node
3) @assign_time_end(@self-1,@self-2,@self-n)

a. Get the highest time end and assign it to the
mother node

4.2 Strategy 2
The second strategy combines simultaneous inputs coming from
different channels (modalities) at Dialogue Level. The idea is to
check the multimodal input pool before launching the actions
expectations waiting an “inter-modality” time.
Obviously, this strategy assumes that each individual input can be
considered as an independent Dialogue Move.

Graphically, this strategy fuses the multimodal inputs at dialogue
level (fig. 6):

Dialogue Manager NLU Module

Lexical and
Grammatical

Analysis

Speech Recognition

User Input

System Output

User

Text To Speech

Voice

Speech

Multimodal Input Pool

Graphical Inteface

Click

User
Input

Presentation Layer

System
Input

Multimodal Fusion

FIGURE 6

In this approach, the multimodal input pool receives and stores all
inputs including information such as time and and modality. The
Dialogue Manager checks the input pool regularly to retrieve the
corresponding input. If more than one input is received during a
certain timeframe, they are considered simultaneous or pseudo-
simultaneous. In this case, further analysis is needed in order to
determine whether those independent multimodal inputs are truly
related or not.
If the inputs timing with respect to each other is deemed to be
within the plausible time range to consider them a potential
multimodal combination, then additional information will be
taken into account to decide whether these independent DMoves
are complementary or not:

• If one is TriggeringCondition of a Dialogue Rule, and
the other one is part of the expectations

• If both are expectations of an already active Dialogue
Rule.

• If there is no other parallel dialogue history whose
active Dialogue Rules may conflict with the previously
identified one.

When all indicates that the DMoves are related and
complementary, they merge into a unique Information State.
Otherwise, different paths may be taken depending on the
situation:

• One of them may complete an already active Dialogue
Rule whereas the other may trigger a new unrelated
TriggeringCondition and therefore a new parallel
dialogue history.

• Each of them may complete already active Dialogue
Rules in parallel dialogue histories unambiguously.

• Both of them may complete already active Dialogue
Rules in parallel dialogue histories in an ambiguous
manner, in which case disambiguation subdialogues will
be needed.

• They are unrelated and not compatible with any active
Dialogue Rule, so two new tasks with their respective
dialogue histories will be initiated.

Our approach can be described by this high-level algorithm:

 Receive uni-modal input A (DMove)
 Receive uni-modal input B (DMove)
 IF A & B are complementary

& contextually appropriate
& within a predefined timeframe

 THEN Create new IS from these DMoves +
Dialogue History

 ELSE
 store the & disambiguate

This algorithm takes into account:

1. Dialogue Moves generated
2. Modality
3. Inter-Input timing
4. Dialogue Move order
5. Existing Dialogue Moves
6. Existing Dialogue Histories
7. Scenario and contextual factors

Dialogue Rules may also be configured with the same logical
operators mentioned within the Strategy 1, since the Dialogue
Manager actually uses the unification module of the parser.
Similar rules to the one detailed for Strategy 1could be configured
within the Dialogue Manager.
The difference is where we are applying these rules: for Strategy
one the coverage is composed by the symbols (terminals and not
terminals) within the grammar rules, meanwhile the coverage for
Strategy 2 are the DTACs structures that describe the DMoves.
Although taking into account a considerable number of factors
may not appear as a very appealing solution, this innovative
approach enables the system to cope with “Multimodal
Multitasking”, which would not be possible within the
implementation of Strategy 1.
By Multimodal Multitasking we imply the possibility of
accomplishing independent unrelated tasks simultaneously,
sparing continuous system disambiguation. Humans have often
proven to be able and even prefer to accomplish several tasks at
once, as long as they are familiar with the tools and/or
environment and none of the tasks imply too heavy a cognitive
load.
With this approach, multimodal systems have taken a step forward
towards more intelligent, flexible and collaborative systems.

5. Comparison of strategies
Computational efficiency: The first strategy is much heavier from
a computational point of view since tasks are added at unification
level which represents 80% of the parsing time [Amores et al.
2000]. On the other hand, the additional computational
complexity added by the second strategy is of no consequence.

Dependency on time measures: The first strategy is highly
dependent on the precision of the time data. The overlapping
times fixed at unification rules assume that the init_time and
end_time features are accurate, which is not always the case. The
second strategy however allows for a certain degree of flexibility.
Background data: In order to define the appropriate time ranges
for multimodal complementary inputs, real user data is required.
The more precise this time ranges need to be, the more important
it becomes to collect large amounts of data, especially considering
the possibility of tuning the thresholds rule by rule.
Multimodal multitasking: The multimodal multitasking is the
ability to carry independent tasks at the same time by means of
different multimodal channels. The notion of task only exists at
dialogue level, therefore strategy one cannot be applied if dealing
with multimodal multitasking.
Inter-modality dissambiguation: When dealing with more
complex modalities (i.e. voice and gesture recognition) we may
expect not only pairs item-time, but full lattices coming from both
channels. The mutual disambiguation could be more easily dealt
with the first strategy. The second strategy would become
considerably more complex.
Dialogue Acts: At theoretical level, a potential problem of the
second strategy could arise from the assumption that any uni-
modal input generates always a Dialogue Move. Although we
have been unable to find any example or situation where this
assumption is false, it could possibly be the case with more
sophisticated not speech-driven systems.
Number of Modalities: We believe that as the number of
modalities increases, the best choice would be the second strategy,
since the first strategy implies a high computational overload
which would become unbearable with a higher number of
modalities.

6. ShowCase: Scientific Visualization
Imagine the following futuristic scenario: there is a highly skilled
scientist; let’s say that within the Meteorology domain. He has an
embedded PDA-like device which is programmed as a general
purpose personal assistant (P.A.). This device has also a specific
program for Meteorology scientific visualization. The device
admits inputs by voice and pen at any time.
Now consider the following interaction:

- Scientist: Please load the “Meteo SciVis” program.
(Unimodal voice input)

- P.A: Here it is, sir. Would you like to load a specific graph?
(Unimodal voice output)

- Scientist: Yes, load the “Spain_2090” graph. . (Unimodal
voice input)

- Scientist: Now change this label to “Seville” –click on a
label- (Multimodal voice and pen input).

Nothing new so far. Our future device understands everything and
accomplishes the tasks properly. Both strategies are suitable for
this.
But now imagine that the scientist wants to switch on the light in
his office. Probably, he is not going to get up and manually switch
it on (this is an old habit from the XXth century), he will just ask

the P.A. to do it. But in the future he won’t need to stop working
on his graph, so he will change a particular line of the graph at the
same time. Therefore, the P.A. will receive two simultaneous
inputs:
- Switch on the light (voice)
- Move this line from here to here (pen)
This short multimodal-multitasking example shows the potential
gain of the second strategy:
The first strategy will always try to fuse both inputs because at
grammar level the concept of “task” doesn’t exist. Therefore, a
P.A. ruled by the first strategy would not accomplish the task
correctly.
On the other hand, the second strategy would identify that these
two inputs correspond to different dialogue branches, so the P.A.
will not try to fuse the independent inputs.

7. Conclusions
This paper describes the evolution from a speech-only system to a
multimodal one, implementing an intermediate layer called
“multimodal input pool” whose role is to allow for asynchronous
behaviour.
The general steps taken to cope with both speech and clicking
inputs have been described and two strategies to fuse multimodal
entries explained and compared.
Comparing the advantages and drawbacks of both strategies we
can conclude that strategy 2 suits better the needs of our naïve
voice-and-click scenario. Although strategy 1 is certainly more
powerful (we can tune the fusion rule by rule in greater detail) and
may have some theoretical advantages over the second strategy, it
requires an enormous amount of data, and the potential
advantages remain to be proven in a real environment. However,
strategy 2 seems to provide a suitable solution for the dialogue
issues mentioned, without increasing the computational
complexity significantly.

8. FUTURE WORK
Future research includes the study and comparison of both
strategies in a scenario with different and more complex
multimodal channels.
It would also be interesting to study the possibility of using both
strategies at the same time, automatically deciding when to apply
each one.

9. ACKNOWLEDGMENTS
This work was done under the “TALK” research project, funded
by EU´s FP6 [ref. 507802] and the “Multilingual Management of
Spoken Dialogues” project, funded by the Spanish Ministry of
Education under grant TIC2002-00526.

10. REFERENCES
[1] Gabriel Amores y José Francisco Quesada (1997)

“Episteme” Procesamiento del Lenguaje Natural 21. pp. 1-
16.

[2] Gabriel Amores, José Francisco Quesada (2000) “Diseño e
Implementación de Sistemas de Traducción Automática” Ed.
Universidad de Sevilla (Book, ISBN: 84-472-0585-1).

[3] Richard A. Bolt (1980), “Put-that-there”: Voice and gesture
at the graphics interface, ACM SIGGRAPH Computer
Graphics, v.14 n.3, p.262-270, July 1980

[4] Michael Johnston, Philip R. Cohen, David McGee, Sharon
L. Oviatt, James A. Pittman, Ira A. Smith (1997):
“Unification-based Multimodal Integration”. ACL 1997:
281-288

[5] Michael Johnston (1998): “Unification-based Multimodal
Parsing”. COLING-ACL 1998, 624-630.

[6] Michael Johnston, Srinivas Bangalore (2000). “Finite State
Multimodal Parsing and Understanding”. Proceedings of
the 18th conference on Computational linguistics - Volume
1. pp 369-375.

[7] Michael Johnston, Srinivas Bangalore (2001). “Finite-state
Methods for Multimodal Parsing and Integration”, Finite
State Methods in Natural Language Processing, August
2001.

[8] Pilar Manchón, Guillermo Pérez, Gabriel Amores (2005).
“WOZ experiments in Multimodal Dialogue Systems”.
Proceedings of the ninth workshop on the semantics and
pragmatics of dialogue, 2005, 131-135

[9] David Martin, Adam Cheyer. And Doug Moran (1999). “The
Open Agent Architecture: A framework for building
distributed software systems” Applied Artificial Intelligence:
An International Journal. Volume 13, Number 1-2, January-
March 1999. pp 91-128.

[10] David Milward, Gabriel Amores, Tilman Becker, Nate
Blaylock, Malte Gabslid, Staffan Larsson, Oliver Lemon,
Pilar Manchón, Guillermo Pérez, Jan Schehl (2005 –to
appear). “Integration of ontological knowledge with the ISU
approach”. Deliverable 2.1, Talk Project.

[11] Sharon Oviatt (1999). “Ten myths of multimodal
interaction”, Communications of the ACM, Vol. 42, No. 11,
November, 1999, pp. 74-81.

[12] Sharon Oviatt (2003). “Multimodal interfaces”. In The
Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications, J.
JACKO AND A. SEARS, Eds. Lawrence Erlbaum Assoc.,
Mahwah, NJ, 2003, chap.14, 286-304

[13] José Francisco Quesada, Gabriel Amores (1995). “A
computational Model for the Efficient Retrieval of Very
Large Structure-Based Knowledge Bases.” Proceedings of
Knowledge Representation, Use and Storage for Efficiency
(KRUSE95) International Symposium, pp. 86-96 .

[14] José Francisco Quesada, Doroteo Torre, Gabriel Amores
(2000). “Design of a Natural Command Language Dialogue
System”. Deliverable 3.2, Siridus Project

[15] David Traum, Johan Bos, Robin Cooper, Staffan Larsson,
Ian Lewin, Colin Matheson and Massimo Poesio. (1999). “A
model of Dialogue Moves and Information State Revision”.
Technical Report D2.1, Trindi Project.

