SOME THEOREMS ON THE STABILITY OF MULTIBREATHERS IN KLEIN-GORDON LATTICES

University of Portsmouth, UK, November 27, 2013

JFR Archilla
Nonlinear Physics Group (GFNL).
University of Sevilla, Spain. http://grupo.us.es/gfnl

Klein-Gordon systems with linear coupling

Dynamical equations

$$
\ddot{u}_{n}+V^{\prime}\left(u_{n}\right)+\varepsilon \sum_{m=1}^{N} C_{n m} u_{m}=0 \quad n=1, \ldots, N
$$

Coupling examples $(\varepsilon>0)$:

- Elastic attractive coupling: $\sum_{m=1}^{N} C_{n m} u_{m}=2 u_{n}-u_{n+1}-u_{n-1}$
- Next-neighbor, dipole-dipole repulsive coupling: $\sum_{m=1}^{N} C_{n m} u_{m}=u_{n+1}+u_{n-1}$
- Dipolar long-range interaction repulsive coupling: $\sum_{m=1}^{N} C_{n m} u_{m}=\sum_{m=1}^{N} \frac{u_{m}}{r_{n m}^{3}}$

Notation $|u\rangle=\left[\begin{array}{c}u_{1}(t) \\ \vdots \\ \left.u_{N}(t)\right]\end{array}\right] ;|V(u)\rangle=\left[\begin{array}{c}V\left(u_{1}\right) \\ \vdots \\ V\left(u_{N}\right)\end{array}\right] ;|\dot{u}\rangle=\left[\begin{array}{c}\frac{\mathrm{d} u}{\mathrm{~d} t} \\ \vdots \\ \frac{\mathrm{~d} u_{N}}{\mathrm{~d} t}\end{array}\right] ;\left|V^{\prime}(u)\right\rangle=\left[\begin{array}{c}\frac{\partial V}{\partial u_{1}} \\ \vdots \\ \frac{\partial V}{\partial u_{N}}\end{array}\right]$

Linear stability and Newton operator

- Dynamical equation: $|\ddot{u}\rangle+\left|V^{\prime}(u)\right\rangle+\varepsilon C|u\rangle=0$
$|u\rangle$ time-reversible and periodic with frequency $\omega_{\mathrm{b}}=\frac{2 \pi}{T}$
- (Linear) stability equation

$$
\mathcal{N}_{\varepsilon}(u)|\xi\rangle \equiv|\ddot{\xi}\rangle+V^{\prime \prime}(u) \cdot|\xi\rangle+\varepsilon C|\xi\rangle=E|\xi\rangle
$$

Newton operator: $\mathcal{N}_{\varepsilon}$

- The Floquet Matrix: $\left[\begin{array}{l}\left\{\xi_{n}(T)\right\} \\ \left\{\xi_{n}(T)\right\}\end{array}\right]=\mathcal{F}_{E}\left[\begin{array}{l}\left\{\xi_{n}(0)\right\} \\ \left\{\xi_{n}(0)\right\}\end{array}\right]$
- Floquet multipliers of \mathcal{F}_{E} and arguments:

$$
\lambda_{i}=\exp \left(\mathrm{i}_{i}\right) \quad ; \quad i=1, \ldots, 2 N
$$

- Band structure

$$
\left(\left\{\theta_{l}\right\}, E\right) \quad \text { with } \quad \theta_{l} \in \mathcal{R}
$$

- Stability:

The solution $|u\rangle$ is linearly stable if there are $2 N$ band intersections or tangent points with their multiplicity with the axis $E=0$.
S Aubry. Physica D, 103:201-250, 1997.

Example of bands

Cubic potential, attractive elastic coupling, $\varepsilon=0.05$.
Stable single breather.

Bands figures from:
A Alvarez, JFR Archilla, J Cuevas and FR Romero, Dark breathers in Klein-Gordon lattices. Band analysis of their stability properties. New Journal of Physics 4:72.1-72.19 (2002).

Bands at the anticontinuous limit $(\varepsilon=0)$
Stability equation: $\quad \mathcal{N}_{0}(u)|\xi\rangle \equiv|\ddot{\xi}\rangle+V^{\prime \prime}(u) \cdot|\xi\rangle=E|\xi\rangle$,

- $N-p$ excited oscillators . Code $\sigma_{n}= \pm 1$

$$
\ddot{\xi}_{n}+V^{\prime \prime}\left(u_{n}\right) \xi_{n}=E \xi_{n}
$$

With $E=0$:
Phase mode (periodic): \dot{u}_{n}
Growth mode (unbounded): $\frac{\partial u_{n}}{\partial \omega_{\mathrm{b}}}$

- $p \quad$ rest oscillators. Code $\sigma_{n}=0$

$$
\ddot{\xi}_{n}+\left(\omega_{0}\right)^{2} \xi_{n}=E \xi_{n} \quad ; \quad \omega_{0}=\sqrt{V^{\prime \prime}(0)}
$$

Bands

- Excited oscillators $(N-p)$: Tangent from above (soft) or below (hard)
- Rest oscillators $(p): \quad E=\omega_{0}^{2}-\omega_{\mathrm{b}}^{2}\left(\frac{\theta}{2 \pi}\right)^{2}$

Bands at the anticontinuous limit

Example of bands at $\varepsilon=0$
Cubic potential, zero coupling

Example of unstable bands

Dark breather. Cubic potential, attractive coupling $\varepsilon=0.004$

Example of stable bands

Dark breather. Cubic potential, repulsive coupling, $\varepsilon=0.015$

Degenerate perturbation theory

If \mathcal{N}_{0} is a linear operator with a degenerate eigenvalue E_{0}, with eigenvectors $\left\{\left|v_{n}\right\rangle\right\}$, which are ortonormal with respect to a scalar product, i.e., $\left\langle v_{n} \mid v_{m}\right\rangle=\delta_{n m}$, and if $\varepsilon \tilde{\mathcal{N}}$ is a perturbation of \mathcal{N}_{0}, with ε small; then, to first order in ε, the eigenvalues of $\mathcal{N}_{0}+\varepsilon \tilde{\mathcal{N}}$ are $E_{0}+\varepsilon \lambda_{i}$, with λ_{i} being the eigenvalues of the perturbation matrix Q with elements $Q_{n m}=\left\langle v_{n}\right| \tilde{\mathcal{N}}\left|v_{m}\right\rangle$.
Scalar product $\left\langle\xi_{1} \mid \xi_{2}\right\rangle=\sum_{n=1}^{N} \int_{-T / 2}^{T / 2} \xi_{1}^{*}(t) \xi_{2}(t) \mathrm{d} t$
Basis $N-p$ elements (excited oscillators):

$$
|n\rangle=\frac{1}{\mu}\left[\begin{array}{c}
\vdots \\
0 \\
\dot{u}^{0} \\
0 \\
\vdots
\end{array}\right] \quad ; \quad \mu=\sqrt{\int_{-T / 2}^{T / 2}\left(\dot{u}^{0}\right)^{2} \mathrm{~d} t}
$$

Operators

$$
\begin{aligned}
\mathcal{N}_{\varepsilon}(u)|\xi\rangle & =\overbrace{|\tilde{\xi}\rangle+V^{\prime \prime}(u) \cdot|\xi\rangle}^{\mathcal{N}_{0}|\xi\rangle}+\varepsilon \overbrace{\left(V^{V^{\prime \prime \prime}}(u) \cdot u_{\varepsilon} \cdot|\xi\rangle+C|\xi\rangle\right)}^{\tilde{\mathcal{N}}|\xi\rangle}= \\
& =(\underbrace{E_{0}}_{0}+\varepsilon \lambda_{i})|\xi\rangle
\end{aligned}
$$

Demonstration (1)

Deriving with respect to ε, at $\varepsilon=0$, the dynamical equations we obtain:

$$
\begin{equation*}
\left|\ddot{u}_{\varepsilon}\right\rangle+V^{\prime \prime}(u) \cdot\left|u_{\varepsilon}\right\rangle+C|u\rangle=0 \quad \text { or } \quad N_{0}\left|u_{\varepsilon}\right\rangle=-C|u\rangle . \tag{1}
\end{equation*}
$$

$\tilde{C}_{n m}=\langle n| C|m\rangle$ is C without the columns and rows corresponding to the oscillators at rest.

$$
\begin{align*}
\langle n| V^{\prime \prime \prime}(u) \cdot u_{\varepsilon}|m\rangle= & \\
\frac{1}{\mu^{2}} \int_{-T / 2}^{T / 2}\left[\ldots, 0, \dot{u}_{n}^{0}, 0, \ldots\right] \quad & {\left[\ldots, 0, V^{\prime \prime \prime}\left(u^{0}\right) u_{m, \varepsilon} \dot{u}_{m}^{0}, 0, \ldots\right]^{\dagger} \mathrm{d} t=} \\
& \frac{\delta_{n m}}{\mu^{2}} \int_{-T / 2}^{T / 2} \dot{u}^{0} V^{\prime \prime \prime}\left(u^{0}\right) u_{n, \varepsilon} \dot{u}^{0} \mathrm{~d} t, \tag{2}
\end{align*}
$$

with $u_{n, \varepsilon}=\left(\frac{\partial u_{n}}{\partial \varepsilon}\right)_{\varepsilon=0}$. Thus, $\langle n| V^{\prime \prime \prime}(u) \cdot u_{\varepsilon} \cdot|n\rangle=0$ if $n \neq m$
To calculate the last integral in (2) we will integrate by parts and use that the integral in a period of the derivative of a periodic function is zero. Besides, the functions $u_{n, \varepsilon}$ are periodic as the coefficients of their Fourier series are given by the derivatives with respect to ε of the Fourier coefficients of u_{n}. In the deduction below, all the integral limits are $-T / 2$ and $T / 2$, and the terms between brackets from integration by parts will be zero.

Demonstration (2)

The last integral in Eq. (2) becomes:

$$
\begin{array}{r}
{\left[\dot{u}^{0} u_{n, \varepsilon} V^{\prime \prime}\left(u^{0}\right)\right]_{-T / 2}^{T / 2}-\int V^{\prime \prime}\left(u^{0}\right) \dot{u}^{0} \dot{u}_{n, \varepsilon} \mathrm{~d} t-\int V^{\prime \prime}\left(u^{0}\right) \ddot{u}^{0} u_{n, \varepsilon} \mathrm{~d} t=} \\
-\left[V^{\prime}\left(u^{0}\right) \dot{u}_{n, \varepsilon},\right]_{-T / 2}^{T / 2}+\int V^{\prime}\left(u^{0}\right) \ddot{u}_{\varepsilon, n}, \mathrm{~d} t-\int V^{\prime \prime}\left(u^{0}\right) \ddot{u}^{0} u_{n, \varepsilon} \mathrm{~d} t= \\
-\int \ddot{u}^{0}\left(\ddot{u}_{n, \varepsilon}+V^{\prime \prime}\left(u^{0}\right) u_{n, \varepsilon}\right) \mathrm{d} t \tag{3}
\end{array}
$$

The term between parentheses, is the n component of the lhs of Eq. (1), i.e., it becomes $-\sum_{m} C_{n m} u_{m}^{0}$, where $u_{m}^{0}=u_{\tilde{C}}^{0}$, if the oscillator m is excited, and zero otherwise, i.e., it is $-\sum_{m} \tilde{C}_{n m} u^{0}=-\left(\sum_{m} \tilde{C}_{n m}\right) u^{0}$. Equation (3) becomes:

$$
\begin{align*}
\left(\sum_{m} \tilde{C}_{n m}\right) \int \ddot{u}^{0} u^{0} d t & = \\
\left(\sum_{m} \tilde{C}_{n m}\right)\left(\left[\dot{u}^{0} u^{0}\right]_{-T / 2}^{T / 2}-\int\left(\dot{u}^{0}\right)^{2} d t\right) & =-\left(\sum_{m} \tilde{C}_{n m}\right) \mu^{2} . \tag{4}
\end{align*}
$$

That is, equation (2), leads to:

$$
\begin{equation*}
\langle n| V^{\prime \prime \prime}(u) \cdot u_{\varepsilon} \cdot|n\rangle=-\sum_{m} \tilde{C}_{n m} \quad \text { at } \quad \varepsilon=0 . \tag{5}
\end{equation*}
$$

Demonstration (3)

Therefore the diagonal elements of the perturbation matrix Q are

$$
\begin{equation*}
Q_{n n}=-\sum_{m} \tilde{C}_{n m}+\tilde{C}_{n n}=-\sum_{\forall m \neq n} \tilde{C}_{n m}=-\sum_{\forall m \neq n} Q_{n m} . \tag{6}
\end{equation*}
$$

To summarize, the perturbation matrix Q is given by:

$$
\begin{equation*}
Q_{n m}=\tilde{C}_{n m}, \quad n \neq m, \quad Q_{n n}=-\sum_{\forall m \neq n} Q_{n m}, \tag{7}
\end{equation*}
$$

\tilde{C} being the coupling matrix without the p rows and columns corresponding to oscillators at rest.

Perturbation matrix. Oscillators in phase
Modified coupling matrix $\tilde{C} \quad$ Identical to C but without the rows and columns
for the rest oscillators
Perturbation matrix Q

$$
\begin{aligned}
Q_{n m} & =\tilde{C}_{n m}, \quad n \neq m \\
Q_{n n} & =-\sum_{\forall m \neq n} Q_{n m}
\end{aligned}
$$

Example: 3 -site breather. Code $[1,1,1]$. Elastic attractive interaction

$$
C=\left[\begin{array}{rrrrrr}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
-1 & 0 & \cdots & 0 & -1 & 2
\end{array}\right] ; \tilde{C}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] ; Q=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=3$
$\lambda_{1}=0$: phase mode
λ_{2}, λ_{3} positive
$\begin{array}{cc}\text { Conclusion If } \varepsilon>0 \quad & \text { Unstable for } V \text { soft } \\ \text { Stable for } V \text { hard }\end{array}$

Perturbation matrix. Oscillators not in phase. V symmetric
Code matrix $\quad \sigma=\left[\begin{array}{c}\sigma_{1} \\ \vdots \\ \sigma_{N}\end{array}\right]$

Perturbation matrix Q

$$
\begin{aligned}
Q_{n m} & =\left\{\begin{array}{ccc}
\tilde{C}_{n m} & \text { if } & \sigma_{n}=\sigma_{m} \\
-\tilde{C}_{m m} & \text { if } & \sigma_{n} \neq \sigma_{m}
\end{array}\right\} \quad n \neq m \\
Q_{n n} & =-\sum_{\forall m \neq n} Q_{n m}
\end{aligned}
$$

Symmetric multibreathers stability theorem

Let be $V\left(u_{n}\right)$ symmetric and $\left\{\lambda_{i}\right\}$ the eigenvalues of $Q_{n m}$:
(a) if $V\left(u_{n}\right)$ is hard and there is any negative value in $\left\{\epsilon \lambda_{i}\right\}$ the multibreather at low coupling will be unstable, and stable otherwise.
(a) if $V\left(u_{n}\right)$ is soft and there is any positive value in $\left\{\epsilon \lambda_{i}\right\}$ the multibreather at low coupling will be unstable, and stable otherwise.

Example : 3 -site breather. Code $[-1,1,-1]$. Elastic attractive coupling.

$$
C=\left[\begin{array}{rrrrrr}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
-1 & 0 & \cdots & 0 & -1 & 2
\end{array}\right] ; \tilde{C}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] ; Q=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=0$ (phase mode), $\lambda_{2}=-1, \lambda_{3}=-3$ (both negative)
Conclusion: If $\varepsilon>0$: Stable for V soft, Unstable for V hard.

Non-symmetric on-site potentials
Symmetry coefficient $\gamma: \gamma=-\frac{\int_{-T / 2}^{T / 2} \dot{u}^{0}(t) \dot{u}^{0}(t+T / 2) \mathrm{d} t}{\int_{-T / 2}^{T / 2} \dot{u}^{0}(t) \dot{u}^{0}(t) \mathrm{d} t}$
Properties of γ

1) $\gamma=\gamma\left(\omega_{\mathrm{b}}\right)$
2) $0<\gamma<1$
3) If V is symmetric $\quad \gamma=1$
4) $\omega_{\mathrm{b}} \longrightarrow \omega_{0} \Rightarrow \gamma \longrightarrow 1$
5) Numerically: Fourier coefficients 6) Analytically: Morse potential: $\gamma=\omega_{\mathrm{b}}$

Perturbation matrix Q

$$
\begin{aligned}
Q_{n m} & =\left\{\begin{array}{ccc}
\tilde{C}_{n m} & \text { if } & \sigma_{n}=\sigma_{m} \\
-\gamma \tilde{C}_{n m} & \text { if } & \sigma_{n} \neq \sigma_{m}
\end{array}\right\} n \neq m \\
Q_{n n} & =-\sum_{\forall m \neq n} Q_{n m}
\end{aligned}
$$

Non-symmetric multibreather stability theorem

The symmetry coefficient γ versus ω_{b}

Application. 2-site breathers
$C=\left[\begin{array}{rrrrrr}2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -1 & 0 & \cdots & 0 & -1 & 2\end{array}\right]$
Code $\pm[1,1]: \quad \tilde{C}=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right] ; Q=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right] ;\left(\lambda_{1}, \lambda_{2}\right)=(0,+2)$

Code $\pm[-1,1]: \quad \tilde{C}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] ; Q=\left[\begin{array}{rr}-\gamma & \gamma \\ \gamma & -\gamma\end{array}\right] ;\left(\lambda_{1}, \lambda_{2}\right)=(0,-2 \gamma)$

$\pm[1,1]$	Attractive	Repulsive
Soft	Unstable	Stable
Hard	Stable	Unstable

$\pm[1,-1]$	Attractive	Repulsive
Soft	Stable	Unstable
Hard	Unstable	Stable

Theorem by Aubry for the symmetric case in:
JL Marín. PhD thesis, June 1997.

Application. 3 -site breathers

Code $\pm[1,1,1] \quad:$

	Attractive coupling	Repulsive coupling
Soft	Unstable	Stable
Hard	Stable	Unstable

Code $\pm[-1,1,-1]$:

	Attractive coupling	Repulsive coupling
Soft	Stable	Unstable
Hard	Unstable	Stable

Code $\pm[1,1,-1]$:

> Always unstable

MST versus exact numerical

Morse potential. Elastic attractive coupling. Code $[-1,1,-1]$.
Frequency $\omega_{\mathrm{b}}=\gamma=0.8$.
Eigenvalues E of the Newton operator versus the coupling ε

Multibreathers

Group of contiguous oscillators excited at $\varepsilon=0$

> In-phase
(wave vector $q=0$)

	Attractive coupling	Repulsive coupling
Soft	Unstable	Stable
Hard	Stable	Unstable

Out-of-phase
(wave vector $q=\pi$)

	Attractive coupling	Repulsive coupling
Soft	Stable	Unstable
Hard	Unstable	Stable

Mixed
Always unstable

Phonobreathers

All oscillators excited at zero coupling

- With free-ends or fixed-ends boundary conditions: as multibreathers

Coherent with:
I. Daumont, T. Dauxois, and M. Peyrard.

Nonlinearity, 10:617-630, 1997. (Modulational instability).
AM Morgante, M Johansson, G Kopidakis, and S Aubry.
Phys. D, 162:53, 2002. (DNLS)
S Aubry. Physica D, 103:201-250, 1997. (Theorem 9, action properties)

- With periodic boundary conditions: Parity instabilities

Dark breathers

- Free-ends of fixed-ends: almost as multibreathers:

There is a degenerate 0-eigenvalue of $Q \quad \Rightarrow$
If the eigenvalues of Q correspond to instability: instability
If the eigenvalues of Q correspond to stability: undefined

- Periodic boundary conditions: Parity instabilities
- Parity instabilities. Example.

Dark breather. Attractive coupling. Soft on-site potential.
Code $\sigma=[\cdots, 1,-1,0,1,-1, \cdots]$
N odd $(N=5)$:
$\sigma=[1,-1,0,1,-1]$: stable
N even $(N=6): \sigma=[1,-1,0,1,-1,1]$
equivalent to $\sigma=[-1,0,1,-1,1,1]$: unstable.
But with code $\sigma=[\cdots,-1,1,0,1,-1, \cdots]$ the conditions are reversed.

A model with LRI (1)

Twist model for DNA:
B Sánchez-Rey, JFR Archilla, F Palmero, and FR Romero.
Phys. Rev. E, 66:017601-017604, 2002.
Selected by Virtual Journal of Biological Physics Research 4(1), 2002.

A model with LRI (2)

Dynamical equations

$$
\ddot{u}_{n}+V^{\prime}\left(u_{n}\right)+\varepsilon \sum_{m=n-N / 2}^{n+N / 2} \frac{\cos \left[\theta_{t w}(n-m)\right]}{|n-m|^{3}} u_{m}=0
$$

$V\left(u_{n}\right)$: Morse potential
Coupling matrix $\quad C_{n m}=\frac{\cos \left[\theta_{t w}(n-m)\right]}{|n-m|^{3}}$

Some results

Code	$\theta_{t w}=0$	$\theta_{t w}=\pi$
11	Stable	Unstable
$1-1$	Unstable	Stable
101	Stable	Stable
111	Stable	Unstable
$1-11$	Unstable	Stable
$11-1$	Unstable	Stable

A model with LRI (3)

Dependence on the symmetry coefficient $\gamma=\omega_{\mathrm{b}}$. Code $[-1,1,-1]$.
Eigenvalues λ_{i} of Q versus the twist angle $\theta_{t w}$

Instability induced by the nonlinearity for $\gamma=0.1$ and $\theta_{t w}=2 \mathrm{rad}$.

Multibreathers in the Peyrard-Bishop DNA model

Dynamical equations Planar model

$$
\ddot{u}_{n}+V^{\prime}\left(u_{n}\right)+\epsilon\left(2 u_{n}-u_{n-1}-u_{n+1}\right)=0
$$

V : Morse potential (soft) and attractive coupling
In-phase multibreathers are unstable

Helical model for DNA

- D Hennig and JFR Archilla, Multi-site H-bridge breathers in a DNA-shaped double strand. Physica Scripta, 69(2):150-160, 2004.
- Variant of:
M. Barbi, S. Cocco and M. Peyrard, Phys. Lett. A 253, 358 (1999). And continuations.

A helical DNA-like model

Multibreathers in the helical DNA-like model

Effective repulsive coupling

Linear equations

$$
\ddot{r}_{n}=-\omega_{0}^{2} r_{n}-\varepsilon \sin ^{2}\left(\frac{\theta_{0}}{2}\right)\left(2 r_{n}+r_{n+1}+r_{n-1}\right)-\varepsilon \sin \left(\frac{\theta_{0}}{2}\right) \cos \left(\frac{\theta_{0}}{2}\right) d_{0}\left(\alpha_{n+1}-\alpha_{n-1}\right),
$$

Stable in-phase multibreathers

The helical shape supports in-phase, stable multibreathers

Generalization
Hamiltonian $H=\sum_{n}\left(\frac{1}{2} m_{n} \dot{u}_{n}^{2}+V_{n}\left(u_{n}\right)\right)+\varepsilon W(u)$
Dynamical equations $m_{n} \ddot{u}_{n}+V_{n}^{\prime}\left(u_{n}\right)+\varepsilon \frac{\partial W(u)}{\partial u_{n}}=0 \quad V_{n}\left(u_{n}\right)$ heterogeneous
Given periodic solution at $\varepsilon=0: \quad u^{0}=\left[\begin{array}{c}u_{1}^{0} \\ \vdots \\ u_{N}^{0}\end{array}\right] \quad \begin{aligned} & u_{n}^{0} \text { determined by } \\ & n, \text { well, phase } \\ & \text { (non time-reversible) }\end{aligned}$
Basis elements : $|n\rangle=\frac{1}{\mu_{n}}\left[\begin{array}{c}\vdots \\ 0 \\ \dot{u}_{n}^{0} \\ 0 \\ \vdots\end{array}\right] ; \mu_{n}=\sqrt{\int_{-T / 2}^{T / 2}\left(\dot{u}_{n}^{0}\right)^{2} \mathrm{~d} t}$
Perturbation matrix

$$
Q_{n m}=\frac{1}{\mu_{n} \mu_{m}} \int_{-T / 2}^{T / 2} \dot{u}_{n}^{0} \frac{\partial^{2} W\left(u^{0}\right)}{\partial u_{n} \partial u_{m}} \dot{u}_{m}^{0} \mathrm{~d} t, \quad n \neq m ; \quad Q_{n n}=-\sum_{\forall m \neq n} \frac{\mu_{m}}{\mu_{n}} Q_{n m}
$$

Generalized multibreathers stability theorem

Conclusions

1 A theory for calculating the stability of any multibreather in any Klein-Gordon system at (relatively) low coupling
2 For (relatively) simple systems is very simple
3 For complex systems is (relatively) complex
4 Application to a number of systems

2 -site breathers	3-site breathers
Multibreathers	Phonobreathers
Dark breathers	Parity instabilities
Systems with LRI	Nonlinear instabilities

5 Potential consequences for helical DNA models

Bibliography

Demonstration of the stability or instability of multibreathers at low coupling.
JFR Archilla, J Cuevas, B Sánchez-Rey and A Alvarez.
Physica D 180 (2003) 235-255 .
Effect of the introduction of impurities on the stability properties of multibreathers at low coupling.
J Cuevas, JFR Archilla and FR Romero.
Nonlinearity 18 (2005) 769-790.
Multibreather and vortex breather stability in Klein-Gordon lattices: Equivalence between two different approaches.
J Cuevas, V Koukouloyannis, PG Kevrekidis and JFR Archilla
International Journal of Bifurcation and Chaos 21(2011) 2161-2177.
Multibreathers in Klein-Gordon chains with interactions beyond nearest neighbors.
V Koukouloyannis, PG Kevrekidis, J Cuevas and V Rothos
Physica D 242 (2013) 16-29.

> Nolinear Physics Group (GFNL). University of Sevilla http://grupo.us.es/gfnl

