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Germanium 

•  Unlikely structure for moving  discrete breathers 
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Outline 

We believe that there are moving discrete breathers in Ge 

 

• What property allows for their detection? Defect annealing 

 

• What technique we use to detect them:  DLTS  

 

• How efficient DB with respect 

to phonons for annealing?  

 

• What characteristics about  

  breathers in Ge we can estimate?  
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Germanium 

At room temperature (RT, 300 K) the size of the band gap is 0.66 eV while 

increasing with decreasing temperature to 0.74 eV at a temperature of a few K 

 

Relative effective masses (density of states) 

    Si Ge 

Electron       1.08  0.55 

Hole            0.56  0.37 

 

Typical (low doping) values 

    Si              Ge 

Electron mobility (cm2/Vs)                   1350  3900 

Hole mobility (cm2/Vs)   480  1900 
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Defects in germanium 

•  Can be produced by irradiation 

 

•  Of technological interest 
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Some complex defects in germanium 

•  Di-vacancy V-V 

  

• Tri-vacancy  V3, Tetra-vacancy  V4 

 

• Vacancy-Hydrogen  VHn 

 

•  I2, I3, … 

 

• A center: 

Foreign interstitial  0-Vacancy 

 

• E center 

     Substitucional atom-Vacancy 

       Sb doped Ge:    Sb-V 



Defect as electron and hole traps 
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Dynamics of an energy 

state. 

 

The solid arrows :  

electron capture/emission  

 

Dashed arrows:   

hole capture/emission.  
 

 Empty level. defect 

can  

-Capture an electron 

from the  CB  (cn)  

 

-Emit a hole  

to the VB              (ep) 

Defect populated by an 

electron can : 

-Emit an electron   

   to the CB   (en)  

 

- Capture a hole  

from the VB            (cp) 



Electron and hole traps 
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• Defects have aceptor or 

donor levels  

 

• Deep levels: far from the 

nearest band (>0.1 eV). 

 

• Ec-Ev=0.67 eV  

 

•  Electron trap:   

             n-type E0.29 

• Hole trap  

            p-type  H0.10 



Capture and emision rate of an electron trap 
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Signature of  a defect:  nTE    ,  

Activation energy for electron emission: 

Number of defects or traps:            
TN

Other type of parameters: 

• Energy barrier for annealing:  E0 

• Temperature of annealing:               

n depends on fundamental constants and   
*

em

Emission rate 



Capture and emision rate of an electron trap 
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DLTS: Deep Level Transient Spectroscopy 
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Objective:  find the trap parameters and concentration 

Magnitude measured:   electron lifetime in a trap:at different 

temperatures          

Needs a depletion layer as in p-n junction or Schottky diode under 

reverse bias 

 

Procedure: Fill all the trap levels and measures the capacitance at  

        two different times as traps emit electrons and discharge.  

 

DLTS signal or transient:     

 

Repeats the procedure as the temperature changes.   
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DLTS: Deep Level Transient Spectroscopy 
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p+-n  junction     or Schotty diode (metal-semiconductor)    

Zero bias  Reverse bias  

: depletion region.   

Then: biasing pulse fills the depletion region with electrons filling the 

traps, which subsequently emit    

W



DLTS: Deep Level Transient Spectroscopy 
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Capacitance transients:          

Zero bias  

Life time of an electron 

in the trap decreases  

with T 
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DLTS: Rate window 
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Zero bias  
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Typical RW are  

80 s-1 and 200 s-1  

  

When  the emission rate 

en(T)=RW there is a 

maximum at ΔC= ΔC(T) 



DLTS: Example 
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Defect A:  

Defect B:  

Defect C …..  



DLTS: Example, two RW:  Defect E center 
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DLTS: Two many defects! 

18 

  



Number of traps for n-type semiconductor: 
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The number of traps Nt  can be 

determined  

ND  :concentration of donors  

The depletion layer with W 

increases with the bias potential: 

 

The profile Nt(x) can be obtained 

Annealing:  isochronal: same time, different temperatures 

Time: annealing  with time, same temperature. 

Annealing temperature and activation energy E0 can be obtained 



Annealing at room temperature 
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  Annealing rate constant  k(T) can 

be determined 

 

Isochronal annealing: same time, 

different temperatures 

 

Annealing activation energy  

E0  can be determined 
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Our basic experiment: 4 eV ICP plasma annealing 
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1.-Sb doped Ge is damage with  

5 MeV alpha particles 

 

2.- Rest 24 hours 

 

3.-Au diode is evaporated in half 

the sample (half A) 

 

4.- DLST in A  

         (black, alphas only) 

5.-ICP in A and B 

 

6.- Au diode in B 

 

7.- DLTS in A (red-dashed) 

     (red, ICP on Au) 

 

8.- DLTS in B  

      (blue, ICP on Ge) 

 

 



Our basic experiment: Facts 
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1.-Sb concentration:  1.3·1015  cm-3  (ni= 2.4·1013  cm-3)  ;  1 Sb per  108 Ge 
 

2.- Metal  (Au) thickness:  25nm 

 

3.- After ICP on Ge the E center concentration drops 29% from NT= 1.07·1014  cm-3 

 

4.- If ICP is done on Au, the E center reduction is smaller, but exists. 

 

5.- ICP is done for 30’ in intervals to prevent heating 

 

6.- Defect annealing occurs up to  2600 nm or 4600 lattice units 

 

7.- If the plasma energy is increased the effect is smaller  

 

8.-  Thermal annealing has to be done at 150 C to obtain a similar effect 
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Our hypothesis: Ar ions impacting on Ge produce Discrete 

Breathers, which travel through Ge and anneal the defects. 

Why? 

1.-DBs with MD in metals by Hyzhnyakov group have 0.5-5 eV 

 

2.-The maximum energy transfer from Ar to Ge is 3.6 eV 

 

3.- The activation energy for annealing an E center is about 1.36 eV 

 

4.- The energy to anneal a defect has to remain  localized up to 104 lattice units 

 

5- The energy delivered by Ar atoms has to remain localized while traveling 

104 lattice units 

 

6.- Increasing the energy of the plasma does not enhance the effect, this is 

because DBs typically have a definite range or energies.  

 

7.- At least stationary DB have obtained for Si and Ge with MD. 
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Some numbers 

1.-Ion current can be measured,   

 

2.- DB creation efficiency: 

 

3.-Number of breathers:         
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Interaction cross-section and energy delivered by a breather 
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Minimal interacion cross-section  

 

Apparent  diminution of the activation energy because of DB interaction:   Δ 
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Conclusions: 

0.-  Plasma of 4eV produces annealing of defects very deep in Ge   

1.-  4 eV Ar hits  produce DB in Ge with very high efficiency  

 

2.- DB of energy ~3eV travel distances of the order of   

     at least 104 lattice units 

 

3.- The annealing efficiency of DB with respect to phonons is  

      extremely large 

 

4.- The energy delivered by a DB to a defect is ~1.2 eV 

 

Likely conclusions: 
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