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Sketch of the talk

• Why are we interested in cation lattices?

• What evidence is there of moving excitations in cation 

lattices?

• Which is our model?

• Kinks in cation lattices

• Theoretical and numerical results
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Record of moving excitations in mica muscovite: 

quodons (Russell)
• 0.1% of the tracks are explained 

because of charged particles, like 

muons. 

•99.9% of the tracks are 

supposed to be lattice localized 

exitations  or quodons

• They travel along lattice 

directions 

•They travel long distances (mm)

• They have enough energy to 

eject an atom
Schlößer, D., Kroneberger, K., Schosnig, 

M., Russell, F.M. & Groeneveld, K.O. 

(1994). Search for solitons in solids.

Radiation Measurements 23, 209-213.
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Experimental evidence of travelling excitations

in mica muscovite

Trajectories along lattice directions within the K+ layer 

Russell, F.M.,  Eilbeck, J.C. (2007).  Evidence for moving breathers in a 

layered crystal insulator at 300K. Europhysics Letters 78, 1004, 1-5.
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Mica muscovite. Cation layers 

K+

K2[Si6Al2]
IV[Al 4 ]VIO20(OH)4
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Transversal breathers have low energies and move slowly

~ 5·1012 HzSoft breather, E=0.2~0.4 eV Hard breather. E ~0.36eV

Dubinko, V.I., Selyshchev, P.A. & Archilla, J.F.R. (2011). Reaction-rate theory with 

account of the crystal anharmonicity. Phys. Rev. E 83, 041124, 1-13
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Transversal soft and hard breather spectra

0= 167.5cm-1

~ 5·1012 Hz

~20 meV



Supersonic kinks move very fast and have large 

energies.

Yu A Kosevich,  c, R & Ruffo, S. (2004). Supersonic discrete kink-solitons and 

sinusoidal patterns with “magic” wave number in anharmonic lattices. 

Europhys. Lett., 66,  21–27.
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Transversal kinks in a beta  FPU lattice



Coulomb’s chains
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• Longitudinal perturbations

• Cations are in a negative medium so:

• Coulomb’s repulsion is rapidly screened

• The system does not explode

• We discard long range and more than nearest neighbour 

interactions.

• Negative charge at the borders keep cations inside

• Obstacle to movement would come from steric Van der Waals 

forces and electric ones by Pauli repulsion.
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Model with fixed ends

10

2

1

2

1 )1(

1

)1(

1

nnnn

n
uuuu

u

2

1

2

2

1

2

2

2

)()(d

d

nnnn

n
K

xx

Ke

xx

Ke

t

x
m

ps 2.0
2

1
    A, 5.19a     :Units

2

3

0 Ke

amK

JFR Archilla et al, Tartu, October 31,  

2012



What’s special about Coulomb’s repulsión?
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• Forces decay with distance , fewer phonons as compared with 

harmonic coupling

• We now that it 

• There is not a potential well, not a minimum  

• Forces that increase with the distance are not a good physical 

description for this system with large perturbations.
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Coulomb’s and other potentials
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Coulomb’s and other forces



Is the model absurd?
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Muscovite empirical potentials
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Phonon spectrum
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How they compare with experiments?
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Phonon spectrum
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D.R. Collins, W.G. Stirling , C.R.A. Catlow and G. Rowbotham

Determination of Acoustic Phonon Dispersion Curves in Layer Silicates by 

Inelastic Neutron Scattering.and Computer Simulation Techniques. Phys. Chem. 

Minerals. 19: 520-527 (1993) .
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Speed of sound
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G. Brudeylins,  D. Schmicker, Elastic and inelastic helium atom scattering at a cleaved 

mica sheet.  Surface Science, 333: 237-242 (1995).

Esperimental  speed 

of sound:  3.4-3.7 km/s 
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Tail analysis. What kind of excitation we can expect?

19

);
2

cos(
q

vgroup

JFR Archilla et al, Tartu, October 31,  

2012

Tail: the small perturbation at the 

front or back 

abide the linear equation
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Proposed tail  solution: 
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Tail analysis. Different solutions
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Tail dispersion relation and velocity:

Stationary oscillating localized solutions (stationary breathers) 

qV 0;0;0 );
2

cos(M

If stationary breathers exist they should have frequency above the 

phonon band with mode                  but we have not found themq
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Tail analysis. Moving oscillating tails
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Supersonic solitons: moving, localized, non-oscillating 

solutions
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Kinks
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Moving, very steep, 

non-oscillating wave front

We propose the following solution for the magic wave number:

with only three particles perturbed.
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Kinks with the rotating wave approximation (RWA)
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Kinks RWA, velocity versus amplitude
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Kinks tails, decay lenght versus velocity
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Kinetic energy versus velocity
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Kinks behave as a particle with unit mass



Kink simulation, Velocity-Initial amplitude
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Single supersonic kink. Simulation
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Single supersonic kink. Profile.

30JFR Archilla et al, Tartu, October 31,  

2012

c2V

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

d
is

p
la

c
e
m

e
n
t 

(x
n
)

position (n)

Initial amplitude: 1.0535, t: 11.94 s



Single supersonic kink. Video.
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Double supersonic kink. Simulation
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Double supersonic kink. Profile
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Double supersonic kink. Video
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Three kinks. Energy-time
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Four kinks. Profile
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Four kinks. Video
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Physical units, energies versus velocity
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Physical units:  kink:  26 km/s;     phonons: 3.2 km/s
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Physical units, energy profile
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Physical units, Erenrgy versus frequency
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What’s next? ZBL potential
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A magneto-mechanical model
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Made out of magnets. 

Potentials identical to 

Coulomb’s

Moving and static excitations
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Conclusions

• There is something energetic and localized propagating in the layers of muscovite

• A special characteristic of muscovite is that is has repulsive Coulomb’s layers

• Potassium repulsion is probably the dominant interaction in the potassium layers

• Typical FPU polynomial coupling is most likely very unsuitable for muscovite layer 

modelling.

• There are very energetic and localized kinks travelling in Coulomb’s chains with 

muscovite parameters, with properties well described by the theory

• Their energy can be fairly large

• Coulomb’s kinks are  good candidates for quodons
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