SUPERSONIC SOLITONS AND KINKS IN REPULSIVE LATTICES

Juan FR Archilla

Group of Nonlinear Physics Lineal (GFNL) Sevilla, Spain

With Yury Kosevich Semenov Institute of Chemical Physics,

Moscow, Russia

Noé Jiménez, Víctor Sánchez-Morcillo and Lluis García Raffi

Institute of Pure and Applied Mathematics, Valencia, Spain

Inspiration of **Mike Russell**, Heriot-Watt University, Edinburgh, UK

Workshop on: Lattice solitons and irradiation-induced nonlinear phenomena in solids. Tartu, Estonia, October 31-November 2, 2012

Sketch of the talk

• Why are we interested in cation lattices?

• What evidence is there of moving excitations in cation lattices?

- Which is our model?
- Kinks in cation lattices
- Theoretical and numerical results

Record of moving excitations in mica muscovite:

JFR Archilla et al, Tartu, October 31, 2012

quodons (Russell)

• 0.1% of the tracks are explained because of charged particles, like muons.

•99.9% of the tracks are supposed to be lattice localized exitations or quodons

- They travel along lattice directions
- •They travel long distances (mm)

They have enough energy to eject an atom
Schlößer, D., Kroneberger, K., Schosnig,
M., Russell, F.M. & Groeneveld, K.O.
(1994). Search for solitons in solids. *Radiation Measurements* 23, 209-213.

Experimental evidence of travelling excitations in mica muscovite

Trajectories along lattice directions within the K⁺ layer

Russell, F.M., Eilbeck, J.C. (2007). Evidence for moving breathers in a layered crystal insulator at 300K. *Europhysics Letters* 78, 1004, 1-5.

Mica muscovite. Cation layers

K₂[Si₆Al₂]^{IV}[Al₄]^{VI}O₂₀(OH)₄

 \bigcirc K+

Transversal breathers have low energies and move slowly Soft breather, $E=0.2\sim0.4$ eV $v\sim 5\cdot10^{12}$ Hz Hard breather. $E\sim0.36$ eV

Dubinko, V.I., Selyshchev, P.A. & Archilla, J.F.R. (2011). Reaction-rate theory with account of the crystal anharmonicity. *Phys. Rev.* E 83, 041124, 1-13

Transversal soft and hard breather spectra

Supersonic kinks move very fast and have large energies.

Transversal kinks in a beta FPU lattice

Yu A Kosevich, c, R & Ruffo, S. (2004). Supersonic discrete kink-solitons and sinusoidal patterns with "magic" wave number in anharmonic lattices. *Europhys. Lett.*, 66, 21–27.

²⁰¹²

Coulomb's chains

- Longitudinal perturbations
- Cations are in a negative medium so:
 - Coulomb's repulsion is rapidly screened
 - The system does not explode
 - We discard long range and more than nearest neighbour interactions.
- Negative charge at the borders keep cations inside
- Obstacle to movement would come from steric Van der Waals forces and electric ones by Pauli repulsion.

Model with fixed ends

What's special about Coulomb's repulsión?

- Forces decay with distance, fewer phonons as compared with harmonic coupling
- We now that it
- There is not a potential well, not a minimum
- Forces that increase with the distance are not a good physical description for this system with large perturbations.

Is the model absurd?

Muscovite empirical potentials

Coulomb interaction $K^+ - O^{-2}$ and $K^+ - K^+$

Phonon spectrum

Linearized equation:

$$\ddot{u}_n = c^2 (u_{n+1} + u_{n-1} - 2u_n)$$
 $c = \sqrt{2}$ speed of sound

 $\omega_{\rm ph} = \omega_{\rm M} \sin(q/2)$ Maximum phonon frequency $\omega_{\rm M} = 2c$

$$V_{\rm ph} = c \frac{\sin(q/2)}{q/2}$$
; $V_{\rm group} = c \cos(q/2)$ $V_{\rm ph, \, max} = V_{\rm group, \, max} = c$

How they compare with experiments?

Phonon spectrum

D.R. Collins, W.G. Stirling, C.R.A. Catlow and G. Rowbotham Determination of Acoustic Phonon Dispersion Curves in Layer Silicates by Inelastic Neutron Scattering.and Computer Simulation Techniques. *Phys. Chem. Minerals.* 19: 520-527 (1993).

Speed of sound

G. Brudeylins, D. Schmicker, Elastic and inelastic helium atom scattering at a cleaved mica sheet. *Surface Science*, 333: 237-242 (1995).

Tail analysis. What kind of excitation we can expect?

Tail: the small perturbation at the front or back abide the linear equation

$$\ddot{u}_n = c^2 (u_{n+1} + u_{n-1} - 2u_n)$$

Proposed tail solution:

 $u_n = \exp(\xi (n - Vt)) \exp(i(q n - \omega t))$ Front tail $\xi > 0$, n > Vt Back tail $\xi < 0$, n < Vt

Tail analysis. Different solutions

Tail dispersion relation and velocity:

$$\omega = \omega_M \cosh(\xi/2) \sin(q/2);$$

$$V = c \frac{\sinh(\xi/2)}{\xi/2} \cos(q/2);$$

Stationary oscillating localized solutions (stationary breathers)

$$\omega \neq 0; \xi \neq 0; V = 0 \Longrightarrow q = \pi \quad \omega = \omega_M \cos(\frac{\xi}{2});$$

If stationary breathers exist they should have frequency above the phonon band with mode $q = \pi$ but we have not found them

Tail analysis. Moving oscillating tails $\omega \neq 0; \xi \neq 0; V \neq 0 \Rightarrow q \neq 0; q \neq \pi$ $\omega = \omega_M \cosh(\xi/2) \sin(q/2); \quad V = c \frac{\sinh(\xi/2)}{\xi/2} \cos(q/2);$

We need $\omega > 2\kappa = \max(\omega_{phonon})$ for stability The mode $q = \pi$ is stable but does not move The mode q = 0 moves faster but it's unstable Large V can be obtained with strong localization ξ $V > c \Rightarrow \xi > 6.5 \Rightarrow u_{n+1} \approx 0.001 x_n$, this is unrealistic Maxima casillating tails are probably subgravity

Moving oscillating tails are probably subsonic

Supersonic solitons: moving, localized, non-oscillating solutions

$$\omega = 0; \xi \neq 0; V \neq 0 \Longrightarrow q = 0$$

$$V = c \frac{\sinh(\xi/2)}{\xi/2};$$

V is alway larger than the sound velocity.

Solitons are supersonic

Kinks

Moving, very steep, non-oscillating wave front

The equation in the relative displacements:

$$\ddot{v}_n = 2F_n - F_{n+1} - F_{n-1}$$
 with $F_n = \frac{1}{(1 + v_n)^2}$ and $v_n = u_n - u_{n-1}$

We propose the following solution for the *magic* wave number: $q = \frac{2\pi}{3}$, with only three particles perturbed.

$$v_n = -\frac{A}{2}(1 + \cos(qn - \omega t)) \text{ if } -\pi < qn - \omega t < \pi$$

 $v_n = 0$ otherwise.

Kinks with the rotating wave approximation (RWA) Reduction to the first harmonic in $\cos(\theta)$, with $\theta = qn - \omega t$

 $-\omega^2 A\cos(\theta) = a_1 \cos(\theta)$, with

$$a_{1} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (F_{n} - F_{n+1} - F_{n-1}) \cos(\theta) \, \mathrm{d}\,\theta$$

$$\omega = \frac{1}{(1-A)^{3/4}} \omega_M \sin(q/2); \quad \mathbf{V} = \frac{\omega}{q} = \frac{1}{(1-A)^{3/4}} c \frac{\sin(q/2)}{q/2}$$

Kinks are supersonic

Kinks RWA, velocity versus amplitude

Kinks tails, decay lenght versus velocity

Kinetic energy versus velocity

Kink simulation, Velocity-Initial amplitude

Single supersonic kink. Simulation

Single supersonic kink. Profile.

Single supersonic kink. Video.

31

Double supersonic kink. Simulation

Double supersonic kink. Profile

Double supersonic kink. Video

Three kinks. Energy-time

Four kinks. Profile

Four kinks. Video

Physical units, energies versus velocity

Physical units: kink: 26 km/s; phonons: 3.2 km/s

Physical units, energy profile

40

Physical units, Erenrgy versus frequency

What's next? ZBL potential

A magneto-mechanical model

Made out of magnets. Potentials identical to Coulomb's

Moving and static excitations

Conclusions

- There is something energetic and localized propagating in the layers of muscovite
- A special characteristic of muscovite is that is has repulsive Coulomb's layers
- Potassium repulsion is probably the dominant interaction in the potassium layers
- Typical FPU polynomial coupling is most likely very unsuitable for muscovite layer modelling.
- There are very energetic and localized kinks travelling in Coulomb's chains with muscovite parameters, with properties well described by the theory
- Their energy can be fairly large
- Coulomb's kinks are good candidates for quodons

References

Kosevich, Yu. A., Khomeriki, R. & Ruffo, S. (2004). Supersonic discrete kink-solitons and sinusoidal patterns with "magic" wave number in anharmonic lattices, *Europhys, Lett.* 66, 21-27.

Dubinko, V.I., Selyshchev, P. A. & Archilla, J.F.R. (2011). Reaction rate theory with account of the crystal anharmonicity. *Phys Rev E* 83, 041124,1-13.

Russell, F. M. & Eilbeck, J. C. (2007). Evidence for moving breathers in a layered crystal insulator at 300K. *Europhys, Lett.*, 78, 10004,1-5.