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Sketch of the talk

« Why are we interested in cation lattices?

« What evidence is there of moving excitations in cation
lattices?

« Which Is our model?
» Kinks In cation lattices

e Theoretical and numerical results

JFR Archilla et al, Kiev, October 8-11
2012



Record of moving excitations in mica muscovite:

guodons (Russell)

* 0.1% of the tracks are explained
because of charged particles, like
muons.

*99.9% of the tracks are
supposed to be lattice localized
exitations or quodons

» They travel along lattice
directions

*They travel long distances (mm)
 They have enough energy to

eject an atom
Schlolier, D., Kroneberger, K., Schosnig,
M., Russell, F.M. & Groeneveld, K.O.
JFR Archilla et al. Kiev, October 8-11 (1994). Search for solitons in solids.
2012 Radiation Measurements 23, 209-213.
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Experimental evidence of travelling excitations
IN mica muscovite

mica muscovite

atom ejection \

alpha particle

Trajectories along lattice directions within the K* layer

Russell, F.M., Eilbeck, J.C. (2007). Evidence for moving breathers in a
layered crystal insulator at 300K. Europhysics Letters 78, 1004, 1-5.

JFR Archilla et al, Kiev, October 8-11
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Mica muscovite. Cation layers

K,[SigAL]Y[Al , 1"10,(0H),

O K+

JFR Archilla et al, Kiev, October 8-11

2012



Transversal breathers have low energies and move slowly

Soft breather, E=0.2~0.4 eV v~ 5.1012 Hz  Hard breather. E ~0.36eV

E (kJ/mol)

Dubinko, V.1., Selyshcheyv, P.A. & Archilla, J.F.R. (2011). Reaction-rate theory with
account of the crystal anharmonicity. Phys. Rev. E 83, 041124, 1-13

JFR Archilla et al, Kiev, October 8-11 6
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Transversal soft and hard breather spectra
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vo= 167.5cm*
~ 5.1012Hz
~20 meV



Supersonic kinks move very fast and have large
energies.

n

Displacements u

v N [
a) ) >
T 04,
£
i t=20 0.34
¢ 8
& 024
o
A 014
Q
¢ g 04
d =
8 -0.14
Q 15
; x
2 . . . : g N 200
2o 50 100 150 200 Time [t] 50
0 o .
Lattice Sites [n] Lattice Sites [n]

Transversal kinks in a beta FPU lattice

Yu A Kosevich, ¢, R & Ruffo, S. (2004). Supersonic discrete kink-solitons and
sinusoidal patterns with “magic” wave number in anharmonic lattices.

Europhys. Lett., 66, 21-27.
JFR Archilla et al, Kiev, October 8-11
2012



Coulomb’s chains
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« Longitudinal perturbations
» Cations are in a negative medium so:
e Coulomb’s repulsion is rapidly screened
» The system does not explode
 We discard long range and more than nearest neighbour
Interactions.
 Negative charge at the borders keep cations inside
 Obstacle to movement would come from steric effects given by
weak Van der Waals forces and electric ones by Pauli repulsion,

given by overlapping electron orbitals

JFR Archilla et al, Kiev, October 8-11
2012



Model with fixed ends
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What’s spetial about Coulomb’s repulsion?

@ © O

@ @ ©® O

* Forces decay, fewer phonons as compared with harmonics.
* \We now that it Is there
 There Is not a potential well

» Forces that increase with the distance are not a good physical
description for this system with large perturbations.

JFR Archilla et al, Kiev, October 8-11 11
2012



Is the model absurd?

Red:Oxygen, blue: Potassium
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Muscovite empirical potentials

.
Short range K-O: U =65269.7exp(- : eV

213A
Red: K-O; Blue: K-K: Black: total
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Phonon spectrum

Linearized equation:

i =c*(u,+u ,—2u) ¢ =+/2 speed of sound
. . :
Dy, = Oy, sm(z) Maximum phonon frequency m,, = 2C
chin(g) 0
Vph i3 q ! Vgroup W CCOS(E) Vph, max :Vgroup, max C

How they compare with experiments?

JFR Archilla et al, Kiev, October 8-11 14
2012



Phonon spectrum
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D.R. Collins, W.G. Stirling , C.R.A. Catlow and G. Rowbotham

Determination of Acoustic Phonon Dispersion Curves in Layer Silicates by
Inelastic Neutron Scattering.and Computer Simulation Techniques. Phys. Chem.
Minerals. 19: 520-527 (1993) .

JFR Archilla et al, Kiev, October 8-11 15
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Speed of sound
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G. Brudeylins, D. Schmicker, Elastic and inelastic helium atom scattering at a cleaved
mica sheet. Surface Science, 333: 237-242 (1995).

JFR Archilla et al, Kiev, October 8-11 16
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Tail analysis. What kind of excitation we might expect?

Tail: the small perturbation at the front
abide the linear equation

TR 2 0.4/
U, =c°(u,,+u ,—2u)
c: speed of sound ‘\/
005,/ x \/ v \
Proposed tail solution: B e e

u. =exp(n—-Vt)exp(i(< n - wt))

JFR Archilla et al, Kiev, October 8-11 17
2012



Tail analysis. Different solutions

Tail dispersion relation and velocity:

: S iR Rl it
@ = 2ccosh( )S|n(2), \ §Smh(2

d,.
5 )COS(E),

Stationary oscillating localized solutions (stationary breathers)

w#0;E£0V=0=>0=2r @p= 2CCOS(§);

Stationary breathers have frequency above the phonon band with
mode =7

JFR Archilla et al, Kiev, October 8-11 18
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Tail analysis. Moving breathers
w00V #0=q=#0;q# 7

®=2C Cosh(%)sin(g); V = %sinh(g) cos(g);

We need @ > 2x = max(w

) for stability

phonon

The mode g = x Isstable but does not move
The mode g = 0 mowves faster but it's unstable
Too large localization & is unrealistic

V>k=E>65= U,,~0.001x and @ > 6.5max(@,q.0n)

This is unrealistic, then: | Moving breathers are subsonic

JFR Archilla et al, Kiev, October 8-11 19
2012




Supersonic solitons: moving, localized, non-oscillating
solutions
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Kinks 1

09
08

Moving, very steep,
non-oscillating wave front Py
The equation in the relative o1
displacements: bom w % T % &
v, : 1
V. =2F -F ,—F ,with F = TV ) and v, =u, —U, ,
n

We propose the following solution for the magic wave number:q = 2 ,
with only three particles perturbed. 3

= —§(1+ cos(n—amt)) If -Z<gn-ot<rx

v. =0 otherwise.

JFR Archilla et al, Kiev, October 8-11 21
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Kinks with the rotating wave approximation (RWA)

Reduction to the first harmonic in  cos(d), with & = gn— «t

— w®Acos(@) = a, cos(d), with

1 72
A =— I(Fn i) |:n+1 o n—l) COS(Q)dQ
T -7 2

2C

(1_ A)3/4

sin(q/2): V=2 =

2C

sin(g/2)

q Y (1_A)3/4

9

Kinks are also supersonic

JFR Archilla et al, Kiev, October 8-11

2012
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Kinks RWA, velocity versus amplitude
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Kinks tails, decay lenght versus velocity
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Kink simulation, Velocity-Initial amplitude
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Single supersonic kink. Simulation
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Single supersonic kink. Profile.

Initial amplitude: 1.0535, t; 11.94 s
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Single supersonic kink. Video.
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Double supersonic kink. Simulation
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Double supersonic kink. Profile
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Double supersonic kink. Video

V=4]1c
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Three kinks. Energy-time

time/space energy distribution for Aq: 4 energy (dB)

120
15
10
15
w
QO
£

50 100 150
lattice position (n)

JFR Archilla et al, Kiev, October 8-11
2012

32



Four kinks. Profile

displacement (xn)

Initial amplitude: 4.0333, t: 11.94 s
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Four kinks. Video
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Physical units: kink: 26 km/s;

phonons: 3.2 km/s

100 T T Jl“u\

Position (lattice units)
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Physical units, energy profile

K" energies (eV)
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A magneto-mechanical model

Made out of magnets.
Potentials identical to
Coulomb’s

Moving and static excitations

JFR Archilla et al, Kiev, October 8-11 37
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Conclusions

* There is something energetic and localized propagating in the layers of muscovite
* A special characteristic of muscovite is that is has repulsive Coulomb’s layers
 Potassium repulsion is probably the dominant interaction in the potassium layers

» Typical FPU polynomial coupling is most likely very unsuitable for muscovite layer
modelling.

* There are very energetic and localized kinks travelling in Coulomb’s chains with
muscovite parameters, with properties well described by the theory

* Their energy can be fairly large

* Coulomb’s kinks are good candidates for quodons

JFR Archilla et al, Kiev, October 8-11 38
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