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Introduction
Past few years interest in nonlinear discrete systems. 
Applications: optics of waveguide arrays, Bose-
Einstein condensates, micromechanical models,  
biological systems (DNA, proteins…).
One of the most prototypical models: The Discrete 
Nonlinear Schrödinger Equation (DNLS).
DNLS with localized impurities: Nonlinearity and 
periodicity. Scattering phenomena and excitation of 
impurity modes. Applications: Superconductors, 
dynamics electron-phonon interactions. Propagation 
of light in super-lattices with defects and photonic 
crystals.
Interesting studies in connection to the interplay of 
the localized modes with impurities.
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The model
One dimensional discrete system with a defect described by 
the DNLS equation:

Transformation Ψn →Ψne -2 iCt

Single point defect: αn= α δn,0. Renormalization parameters 
(γ=1, focusing case).  Under staggering transformation, can be 
transformed to  defocusing case with opposite sign of the 
impurity. 
Dynamical invariants: Hamiltonian and the norm
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Stationary solutions

Stationary solutions:

Equation: 
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Linear modes

Resolution of a 
eigenvalue problem. 
Number of sites large 
and periodic boundary 
conditions problem can 
be solved. N-1 
extended modes with 
frequencies distributed 
in the interval [-2C,2C] 
and an impurity 
localized mode.
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Nonlinear stationary states

Anticontinuum limit 
(AC) and a Newton-
Raphson fixed point 
algorithm.
Standard stability 
analysis.
Homogeneous 
system: Fundamental 
stationary modes 
exist centered either 
on a lattice site 
(stable) or between 
two adjacent lattice 
sites (unstable).
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Bifurcations of stationary states

In general, the stable 
on-site soliton
localized at the 
impurity merges with 
the unstable inter-site 
centered one localized 
between impurity and 
its neighboring site 
(beyond some critical 
value of |α|) and the 
resulting state 
becomes unstable.

The branch designation is as follows: A Unstable soliton
centered at the impurity (n = n0), B stable on-site  soliton
centered at n = n0, C Unstable inter-site soliton centered at n 
= n0 + 0:5, D stable on-site soliton at n = n0 + 1, E unstable 
inter-site soliton at n = n0 + 1:5, F stable on-site soliton at n 
= n0 +2, G unstable inter-site soli ton at n = n0+2:5, and H 
stable on-site soliton at n = n0+3.
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Invariant manifold approximation
Numerical and analytical approximate method 
(G. James, B. Sánchez-Rey and J. Cuevas. 
Preprint, 2007. arXiv:nlin.PS/0710.4114).
Homogeneous system, the equation 
corresponding to stationary states  can be 
recast as a two-dimensional map. Defining 
yn=Φn and xn= Φn-1, 

The origin is a hyperbolic saddle point. There 
exist a one-a one-dimensional stable and a 
one-dimensional unstable emanating from the 
origin in two directions. These manifolds 
intersect in general transversally (infinity 
homoclinic orbits). On-site and intersite solitons
correspond to the primary intersection points. 
Each intersection point defines a condition that 
allows to determine the soliton.
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Effect of the inhomogeneity

Effect of the inhomogeneity introduced 
as a linear transformation of the 
unstable manifold.
When α>0, the unstable manifold moves 
downwards, changing the intersections 
between the transformed unstable 
manifold and the stable manifold to 
points 1', 2' and 3'. For α=αc, both 
manifolds become tangent. Thus, for α
> αc intersections 3' and 2' are lost, that 
is, for α = αc the breathers centered at 
n=1 and n=0.5 experience a tangent 
bifurcation. 
On the contrary, if α<0, intersections 1' 
and 2' are lost when |α|>|αc|, leading to 
a bifurcation between the breathers 
centered at n=0.5 and n=0. 
Determination of αc : Cubic 
approximation of the unstable manifold 
and tangent points.
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Bifurcation loci (different coupling 
constant C)
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Threshold for solitary wave formation

Solitary wave formation 
problem.
Minimal amplitude 
threshold for a 
compactum of initial data 
to nucleate a localized 
mode
Good approximation? 
(P.G. Kevrekidis et al. 
Phys. Lett. A, 372, 2247, 
2008):
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Interaction of a moving localized 
mode with an impurity

Propagating localized modes, with weak radiative
loses, and its interaction with the impurity.
Generation of moving soliton: Perturbation of a 
stationary soliton by adding a thrust: 

In general, if q is large enough, the soliton moves 
with a small loss of radiation. We can essentially 
distinguish four fundamental regimes.
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I. Trapping
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Trapping (II)
Parameters α and q small
enough. Atractive impurity.
Only a small fraction of
energy is lost by means of
phonon radiation.
In general, the frequency of
the trapped soliton is slighty
smaller than that of the
incindent soliton. Smaller
energy and power than the
corresponding nonlinear
mode with the frequency of
incident soliton.
Conclusion: The incident
breather can activate the
nonlinear mode. Nearly all
energy remains trapped.
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II. Trapping and reflection
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Trapping and reflection (II)
Attractive impurity and strong 
enough. Some fraction of 
energy remains trapped and a 
considerable amount of it is 
reflected, remaining localized.
The incident traveling 
structure has enough energy 
to excite the stationary mode 
centered at the impurity.
The frequency of the 
remaining trapped mode is 
slightly lower than that the 
incident breather, so it has 
even smaller energy and 
power than the corresponding 
nonlinear mode with the 
frequency of incident soliton.

We have found that a necessary condition to trap energy and power by the impurity 
is the existence of a nonlinear localized mode centered at the impurity, with similar 
frequency, and energy and power smaller than that of the corresponding incident 
soliton.
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III. Reflection with no trapping
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Reflection with no trapping (II)
If the impurity is repulsive, and q
small enough, neither trapping, nor 
transmission occur. Instead, all 
energy is reflected, and the traveling 
nonlinear excitation remains 
localized. The incident wave has no 
energy and power to excite the 
localized mode.
If the impurity is attractive and 
strong enough,  the frequency of the 
soliton is smaller than the 
corresponding  to linear impurity 
mode, and all the energy is 
reflected. This is in accordance with 
the necessity of a nonlinear 
localized mode at the impurity site in 
order for the trapping to occur.
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IV. Transmission with no trapping
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Transmission with no trapping (II)

If |α| is small enough, and q high 
enough, transmission with no 
trapping occurs. There exists a 
critical value of q=qc>0 that, if
q>qc, the incident soliton crosses 
through the impurity. The value 
of qc grows with |α|. In the case 
where q<qc, if α<0, reflection 
with no trapping occurs, while if 
α>0, trapping with no reflection 
phenomenon takes place.
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Power trapping, reflection and 
transmission coefficients
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Soliton as a “quasiparticle”
If parameter α is negative and small (in 
absolute value) enough. In this case, the 
solitary wave can be reflected or 
transmitted depending on its velocity. 
Also, when it is reflected,  our numerical 
tests show that its velocity is similar to its 
incident velocity. 
We can consider the soliton as a 
`”quasiparticle'', and the effect of the 
impurity is similar to the effect of a 
potential barrier. We can determine this 
potential barrier for a given value of 
parameter α, 
If the parameter α is small enough, and 
positive (attractive), the solitary wave 
faces a potential “well'' and can be 
trapped if its translational energy is small 
or, if the translational energy is high 
enough, it may be transmitted, losing 
energy that remains trapped by the 
impurity, and decreasing its velocity.
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Comparison with other related models

Stationary solitons with a quintic nonlinear impurity. Bifurcation 
diagram of solitons close to impurity similar to the linear impurities 
case (P.G. Kevrekidis et al. PRE 67, 046604, 2003). 

Small-amplitude solitons with either a linear and a nonlinear cubic 
impurity. Transmission, trapping and reflection (L. Morales-Molina 
and R.A. Vicencio, Opt. Lett. 31, 966, 2006).

Klein-Gordon chains. Moving breathers qualitatively equivalent to 
DNLS solitons (J. Cuevas et al Theor. Math. Phys. 137, 1406, 
2003).
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Future challenges

Consideration of saturable nonlinearities which can 
describe nonlinear waveguides made of 
photorefractive materials. This kind of nonlinearity 
may allows the possibility of moving solitons may 
enhance the mobility of solitary waves in isotropic 
two-dimensional lattices whereas moving solitons
only can take place in anisotropic 2D lattices for cubic 
lattices.
Inclusion of two or more local inhomogeneities and 
the examination of the interplay between them
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