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The Discrete Nonlinear Schrödinger (DNLS) equation
and its relation with the Nonlinear Schrödinger equation

A very ubiquitous equation in nonlinear physics is the
one-dimensional Nonlinear Schrödinger (NLS) Equation:

iBtψ + Bxxψ + |ψ|2ψ = 0

The most famous discretizations of this equation are:

The Ablowitz-Ladiz equation:

iψ̇n + (ψn+1 + ψn�1)(1 + |ψn|
2) = 0

The DNLS equation:

iψ̇n + (ψn+1 + ψn�1 � 2ψn) + |ψn|
2ψn = 0
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The Discrete Nonlinear Schrödinger (DNLS) equation
Solutions of the Ablowitz-Ladik equation

The Ablowitz-Ladik equation is integrable.

Discrete solitons solutions are given by:

ψn(t) =
sinh β

cosh[β(n� x0(t))]
exp[iα(n� x0(t)) + θ(t)]

With:

v = ẋ0(t) =
2 sinh β sin α

β
, ω = θ̇(t) = 2 cosh β cos α + αv
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The Discrete Nonlinear Schrödinger (DNLS) equation
is not integrable

On the contrary, the DNLS equation is not integrable.

Exact solutions must be found numerically. The most common
methods are based on the anti-continuous limit
(R.S. MacKay and S. Aubry. Nonlinearity 7 (1994) 1263)

Stationary solutions, ψn(t) = eiωtφn, are determined by the
equation system:

ωφn = φ3
n + (φn+1 + φn�1 � 2φn)

The aim of this talk is to show

how can φn be approximated for discrete solitons
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Discrete solitons
Sievers–Takeno and Page modes

Discrete solitons are localized solutions of the DNLS equation.

We focus on site-centered (Sievers–Takeno) and bond-centered
(Page) modes.
Exact profiles (numerical calculations):

Sievers–Takeno (ST) mode Page (P) mode
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Discrete solitons
A first approximation

Kivshar and Campbell made the first attempt to find the profiles
(Yu.S. Kivshar and D.K. Campbell. PRE 48 (1993) 3077)

They supposed that

φn =

$&
%

A1 if n = 0
χ1 if |n| = 1
0 otherwise

φn =

$&
%

A2 if n = �1, 0
χ2 if n = �2, 1
0 otherwise

ST mode P mode

After introduction in the DNLS equation, the values of A1, A2, χ1
and χ2, are found:

A1,2 =
?

ω, χ1,2 = ω�1/2
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Discrete solitons
A first approximation

Comparison with numerical profiles.

ST mode P mode
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Discrete solitons
A first approximation

Comparison of the norm, N =
°

n |φn|2.

In the KC approximation, N = ω + 2/ω for the ST mode, and
N = 2ω + 2/ω for the P mode.

ST mode P mode
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Variational approach
The effective Hamiltonian

A further approximation is to suppose that φn has a peaked
profile:

ST mode P mode
φn = A1 exp(�α1|n|) φn = A2 exp(�α2|n|)

The values of A and α are determined through a variational
approach. To this end, a Hamiltonian must be minimized
(B.A. Malomed and M.I. Weinstein. Phys Lett A 220 (1996) 91)

The DNLS Hamiltonian is given by:

H = �
¸
n

[
1
2
|ψn � ψn�1|2 +

1
4
|ψn|4

]
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Variational approach
The effective Hamiltonian

An effective Hamiltonian is found introducing the previous
ansätze:

ST mode:

Heff = 2N2(1� sech α1)�N2
2

tanh2 α1
2 tanh 2α1

, N1 = A2
1 coth α1

P mode:

Heff = 2N2

(
cosh α2 � 1

sinh α2 + cosh α2

)
�

1
4

N2
2 tanh α2, N2 = A2

2csch α2

The Hamiltonian is minimized with respect to α, so that N(α) is
found:

N1 =
4 cosh α1 sinh2 2α1

sinh 4α1 � sinh 2α1
, N2 =

8(1� cosh α2 + sinh α2) cosh2 α2

sinh α2 + cosh α2
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Variational approach
The effective Hamiltonian

An extra equation α(ω) is needed. It is done by a tail analysis.

In the tail, amplitudes are small. Soliton tails can be solutions of
the linearized equation:

ωφn = (φn+1 + φn�1 � 2φn)

Thus,

cosh α = 1 +
ω

2
for both ST and P modes.
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Variational approach
The effective Lagragian

A further approximation is to minimize an effective Lagragian
with respect to α and N.

The DNLS Lagragian is given by:

L =
1
2

¸
n

[
i (ψ�n ψ̇n � ψnψ̇�n ) + |ψn � ψn�1|2 +

1
2
|ψn|4

]
Substituting the peaked ansätze, the effective Lagragians are
found:

ST mode:

Leff = N1(2sech α1 � ω � 2) + N2
1

tanh2 α1
2 tanh 2α1

, N1 = A2
1 coth α1

P mode:

Leff = N2

(
2(1� cosh α2)

sinh α2 + cosh α2
� ω

)
+

N2
2

4
tanh α2, N2 = A2

2csch α2
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i (ψ�n ψ̇n � ψnψ̇�n ) + |ψn � ψn�1|2 +

1
2
|ψn|4

]
Substituting the peaked ansätze, the effective Lagragians are
found:

ST mode:

Leff = N1(2sech α1 � ω � 2) + N2
1

tanh2 α1
2 tanh 2α1

, N1 = A2
1 coth α1

P mode:

Leff = N2

(
2(1� cosh α2)

sinh α2 + cosh α2
� ω

)
+

N2
2

4
tanh α2, N2 = A2

2csch α2
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The Lagragian is minimized with respect to α, so that N(α) is
found:

N1 =
4 cosh α1 sinh2 2α1

sinh 4α1 � sinh 2α1
, N2 =

8(1� cosh α2 + sinh α2) cosh2 α2

sinh α2 + cosh α2

which are the same values obtained minimizing the
Hamiltonian.

The relation ω(α) is found upon minimization of the Lagragian
with respect to N:

ω = 2(sech α1 � 1) + N1
tanh2 α1

tanh 2α1
(ST mode)

ω =
2(1� cosh α2)

sinh α2 + cosh α2
+

1
2

N2 tanh α2 (P mode)
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The DNLS map
and the saddle-point

The stationary DNLS can be written as a 2-D real map, making
the following change of variable:

yn = φn, xn = φn�1

so that "
xn+1 = yn
yn+1 = �y3

n + (ω + 2)yn � xn

This map has a saddle-point at xn = yn = 0. In consequence,
there are a 1-D stable and a 1-D unstable manifold.
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The DNLS map
and the homoclinic tangle

The stable and unstable manifolds intersect and form a
homoclinic tangle. Each of the intersections correspond to a
localized solution.
(D. Hennig et al. PRE 54 (1996) 5788)
T. Bountis et al. Phys Lett A 268 (2000) 50
G. L. Alfimov et al. Physica D 194 (2004) 127)

These intersection points corresponds to (φ�1, φ0). φn¡2 are
determined upon application of the map.
The tangle is symmetric with respect to the lines y = x and
y = �x.
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The DNLS map
ST and P modes

The ST and P modes are due to the intersection of the first
homoclinic windings.

The homoclinic orbit considered for those modes is substantially
simplified.
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The approximated unstable manifold
A third order polynomial

The unstable manifold can be approximated by a third order
polynomial:

y = λx� x3

λ is the eigenvalue of the linearized DNLS map fulfilling that
λ ¡ 1:

λ =
(2 + ω) +

a
ω(ω + 4)

2
Comparison with the exact unstable manifold:
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The approximated unstable and stable manifolds
Intersections

The unstable manifold can be transformed into the stable
manifold through the change x Ø y. Thus, the stable manifold is
given by:

x = λy� y3

Approximate solutions for the ST and P modes are given by the
intersections of both manifolds, leading to the equation:

x = λ(λx� x3)� (λx� x3)3

Solving this equation, we are able to find A1, χ1 and A2. χ2 is
found by application of the map.
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The approximated unstable and stable manifolds
Intersections

For the ST mode,

A1 =

d
λ +

?
λ2 � 4
2

χ1 =

d
λ�

?
λ2 � 4
2

For the P mode,

A2 =
?

λ� 1

χ2 = (λ + ω� 2)
?

λ� 1
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The approximated unstable and stable manifolds
Comparison with numerical profiles

ST mode P mode

For the ST mode, there are only intersections if ω ¡ 1/2
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Variational and homoclinic approximations
ST mode. Comparison with numerical profiles
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Variational and homoclinic approximations
P mode. Comparison with numerical profiles

Jesús Cuevas–Maraver Soliton profiles in DNLS



Introduction
Variational approach

Homoclinic orbit approach
Conclusions

Conclusions

The Variational Approach behaves better than the approximation
to the Homoclinic tangle.

Furthermore, the Homoclinic approximation cannot be used for
calculating the norm.
However, the Homoclinic approximation leads to simpler
expressions for the profiles.
None of the approaches fit for ω Ñ 0.
Possible explanations:

The profile is Gaussian for small ω. This should be take into
account.
The unstable manifold can be approximated by a 5th order
polynomial (but, a 10th degree equation must be solved)
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Thank you for your attention!
More information:

Nonlinear Physics Group (GFNL) of Seville University:

http://www.grupo.us.es/gfnl

My personal web page

http://www.personal.us.es/jcuevas
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