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The Discrete Nonlinear Schrédinger (DNLS) equation

and its relation with the Nonlinear Schrodinger equation

@ A very ubiquitous equation in nonlinear physics is the
one-dimensional Nonlinear Schrédinger (NLS) Equation:

107 + Ouxtp + [P = 0
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@ A very ubiquitous equation in nonlinear physics is the
one-dimensional Nonlinear Schrédinger (NLS) Equation:

107 + Ouxtp + [P = 0

@ The most famous discretizations of this equation are:
o The Ablowitz-Ladiz equation:

P + (Y1 + Pu1) (1 + |gul?) =0
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Introduction

The Discrete Nonlinear Schrédinger (DNLS) equation

and its relation with the Nonlinear Schrodinger equation

@ A very ubiquitous equation in nonlinear physics is the
one-dimensional Nonlinear Schrédinger (NLS) Equation:

107 + Ouxtp + [P = 0

@ The most famous discretizations of this equation are:
o The Ablowitz-Ladiz equation:

i+ (Pus1 + Pno1) (14 [9nl?) = 0
o The DNLS equation:

ill:’n =+ (lpn-&-l +Pn1— an) + |l,l)n|21[1n =0
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The Discrete Nonlinear Schrédinger (DNLS) equation

Solutions of the Ablowitz-Ladik equation

@ The Ablowitz-Ladik equation is integrable.
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The Discrete Nonlinear Schrédinger (DNLS) equation

Solutions of the Ablowitz-Ladik equation

@ The Ablowitz-Ladik equation is integrable.

@ Discrete solitons solutions are given by:

_ sinh 8
cosh([B(n —xo(t))]

¥u(t) explia(n —xo(t)) +6(t)]
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Introduction

The Discrete Nonlinear Schrédinger (DNLS) equation

Solutions of the Ablowitz-Ladik equation

@ The Ablowitz-Ladik equation is integrable.
@ Discrete solitons solutions are given by:

0n(8) = Tt ey ©¥Plin(n = (1) + 0(e)
o With:
v:xo(t):mlfsma, w = 0(t) = 2cosh Bcosa + av
113
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The Discrete Nonlinear Schrédinger (DNLS) equation

is not integrable

@ On the contrary, the DNLS equation is not integrable.
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The Discrete Nonlinear Schrédinger (DNLS) equation

is not integrable

@ On the contrary, the DNLS equation is not integrable.

@ Exact solutions must be found numerically. The most common
methods are based on the anti-continuous limit
(R.S. MacKay and S. Aubry. Nonlinearity 7 (1994) 1263)
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Introduction

The Discrete Nonlinear Schrédinger (DNLS) equation

is not integrable

@ On the contrary, the DNLS equation is not integrable.

@ Exact solutions must be found numerically. The most common
methods are based on the anti-continuous limit
(R.S. MacKay and S. Aubry. Nonlinearity 7 (1994) 1263)

e Stationary solutions, §,,(t) = e“’¢,, are determined by the
equation system:

wp = 4’2 + (¢n+1 + ¢Pn—1— 291711)
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Introduction

The Discrete Nonlinear Schrédinger (DNLS) equation

is not integrable

@ On the contrary, the DNLS equation is not integrable.

@ Exact solutions must be found numerically. The most common
methods are based on the anti-continuous limit
(R.S. MacKay and S. Aubry. Nonlinearity 7 (1994) 1263)

e Stationary solutions, §,,(t) = e“’¢,, are determined by the
equation system:

Wn = P+ (Pu1 + Puo1 — 2¢n)
@ The aim of this talk is to show

how can ¢, be approximated for discrete solitons
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Variational approach Malomed and Weinstein Variational Approach

A new (Lagragian) approach

Discrete solitons

Sievers—-Takeno and Page modes

@ Discrete solitons are localized solutions of the DNLS equation.

@ We focus on site-centered (Sievers—-Takeno) and bond-centered
(Page) modes.
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Variational approach

Discrete solitons

Sievers—-Takeno and Page modes

@ Discrete solitons are localized solutions of the DNLS equation.
@ We focus on site-centered (Sievers—-Takeno) and bond-centered

(Page) modes.
@ Exact profiles (numerical calculations):
Sievers-Takeno (ST) mode Page (P) mode
15 15
1 1
0.5 05
L/
%O 10 0 10 20 -%0 -10 0 10 20




Variational approach Variational Approach

ack

Discrete solitons

A first approximation

@ Kivshar and Campbell made the first attempt to find the profiles
(Yu.S. Kivshar and D.K. Campbell. PRE 48 (1993) 3077)
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Discrete solitons

A first approximation

@ Kivshar and Campbell made the first attempt to find the profiles
(Yu.S. Kivshar and D.K. Campbell. PRE 48 (1993) 3077)

@ They supposed that

A1ifn=0 Arifn=-1,0
pn=1 xiifjn|=1 ¢p=+1 xpifn=-2,1
0 otherwise 0 otherwise
ST mode P mode
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Discrete solitons

A first approximation

@ Kivshar and Campbell made the first attempt to find the profiles
(Yu.S. Kivshar and D.K. Campbell. PRE 48 (1993) 3077)

@ They supposed that

A1ifn=0 Arifn=-1,0
pn=1 xiifjn|=1 ¢p=+1 xpifn=-2,1
0 otherwise 0 otherwise
ST mode P mode

@ After introduction in the DNLS equation, the values of A1, Aj, x1
and x>, are found:

A1p =Vw, X2 =w 2
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Variational approach

Discrete solitons

A first approximation

o Comparison with numerical profiles.

ST mode P mode

—by numerical —d; numerical

25+ —¢, numerical / 25- ——¢, numerical
4, KC B 4, KC
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e Comparison of the norm, N = Y |, |.
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0 Malomed and Weinstein Variational Approach

agian) approach

Discrete solitons

A first approximation

e Comparison of the norm, N = Y |, |.

@ In the KC approximation, N = w + 2/w for the ST mode, and
N = 2w + 2/ w for the P mode.

ST mode P mode
10— 15
H —— Numerical H —— Numerical
i —--KC i —--KC

Norm
Norm
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Variational approach

Variational approach

The effective Hamiltonian

@ A further approximation is to suppose that ¢, has a peaked
profile:
ST mode P mode
Pn = Arexp(—aifn])  ¢n = Az exp(—az|n])
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Variational approach

Variational approach

The effective Hamiltonian

@ A further approximation is to suppose that ¢, has a peaked
profile:

ST mode P mode
Pn = Arexp(—aifn])  ¢n = Az exp(—az|n])
@ The values of A and « are determined through a variational

approach. To this end, a Hamiltonian must be minimized
(B.A. Malomed and M.I. Weinstein. Phys Lett A 220 (1996) 91)
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Preliminaries

Variational approach Mal a jational Approach

Variational approach

The effective Hamiltonian

@ A further approximation is to suppose that ¢, has a peaked
profile:
ST mode P mode
n = Arexp(—ai|n])  ¢n = Az exp(—az|n|)
@ The values of A and « are determined through a variational

approach. To this end, a Hamiltonian must be minimized
(B.A. Malomed and M.I. Weinstein. Phys Lett A 220 (1996) 91)

@ The DNLS Hamiltonian is given by:

1 1
H==3 |3 0n = ol + ol

n
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Variational approach

The effective Hamiltonian

o An effective Hamiltonian is found introducing the previous

ansatze:
o ST mode:
tanh? aq
Heff = 2N2(1 — sech 0(1) — %m, Nl :A%Cothal
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act

Variational approach

The effective Hamiltonian

o An effective Hamiltonian is found introducing the previous

ansatze:
o ST mode:
2 tanh2 51 2
Heff = 2N2(1 — sech 0(1) _sz, Nl :Al COtthl
e P mode:
coshay, — 1 1 5 2
Hye =2 _— | —= nh =A h
oft = 2N (sinh &y + cosh oy ) 4N2 tanhaz, N2 2652
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Preliminaries
Malome: Weinstein Variational Approach
>w (Lagragian) approach

Variational approach

Variational approach

The effective Hamiltonian

o An effective Hamiltonian is found introducing the previous

ansatze:
o ST mode:
Hefs = 2N (1 —sech ay) — %%, N; = A% coth aq
o P mode:
Hegt = 2N, (ﬂ%) — iN% tanh oy, N, = A3csch ay

@ The Hamiltonian is minimized with respect to &, so that N(«) is
found:

~ 8(1 —cosha, +sinhay) cosh? ay

_ 4coshay sinh? 204 N
2= sinh &y + cosh &)

1™ Sinh4a; — sinh 2a;’
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Variational approach

Variational approach

The effective Hamiltonian

@ An extra equation «(w) is needed. It is done by a tail analysis.

@ In the tail, amplitudes are small. Soliton tails can be solutions of
the linearized equation:

Wpn = (Pny1+ Pu—1—2¢n)
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Malomed and Weinstein Variational Approach
A new (Lagragian) approach

Variational approach

Variational approach

The effective Hamiltonian

@ An extra equation «(w) is needed. It is done by a tail analysis.

@ In the tail, amplitudes are small. Soliton tails can be solutions of
the linearized equation:

Wpn = (Pny1+ Pu—1—2¢n)
@ Thus,

coshrx:l—i—%

for both ST and P modes.
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Variational approach

Malomed and Weinstein Variational approach

Comparison with numerical profiles

ST mode P mode
3 3
25 25
2 —— ¢ Numerical 2 i //" g — ¢, numerical
— numerical = —b, numerical
1.5 15 -
g MW L — b, MW
6, MW 1 b, MW
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Variational approach

Malomed and Weinstein Variational approach

Comparison of the norm

ST mode P mode
10 15 T
——Numerical —— Numerical
MW

Norm
Norm
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Variational approach
The effective Lagragian

@ A further approximation is to minimize an effective Lagragian
with respect to « and N.
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proach

Variational approach
The effective Lagragian

@ A further approximation is to minimize an effective Lagragian
with respect to « and N.

@ The DNLS Lagragian is given by:

1 , ; 1
L= 52 [i (@on — Putfs) + |0 — P[> + §|l/’n|4
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Variational approach nstein Variational Approach

Variational approach
The effective Lagragian

@ A further approximation is to minimize an effective Lagragian
with respect to « and N.

@ The DNLS Lagragian is given by:

1 , ; 1
L= 52 [i (@on — Putfs) + |0 — P[> + §|l/’n|4

@ Substituting the peaked ansitze, the effective Lagragians are
found:
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Variational approach nstein Variational Approach

Variational approach
The effective Lagragian

@ A further approximation is to minimize an effective Lagragian
with respect to « and N.

@ The DNLS Lagragian is given by:

1 , ; 1
L= 52 [i (@on — Putfs) + |0 — P[> + §|l/’n|4

@ Substituting the peaked ansitze, the effective Lagragians are
found:

o ST mode:
, tanh? a;

Leff = Nl(ZseCh Q] —w _2) +N1 m,

Ny = A% coth aq
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Variational approach instein Variational Approach

Variational approach
The effective Lagragian

@ A further approximation is to minimize an effective Lagragian
with respect to « and N.

@ The DNLS Lagragian is given by:

1 , ; 1
L= 52 [i (@on — Putfs) + |0 — P[> + §|l/’n|4

@ Substituting the peaked ansitze, the effective Lagragians are
found:
e ST mode:
, tanh? a;

Leff = Nl(ZseCh Q] —w _2) +N1 m,

Ny = A% coth aq

e P mode:

2(1—coshay) N% ,
Leff = No | = —— =~ — —= tanh N> = A2csch .
o ? (Sinhaz + coshay w )+ g anhag, N Scschay u"&
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Variational approach

Variational approach
The effective Lagragian

o The Lagragian is minimized with respect to «, so that N(«) is
found:
4 cosh aq sinh? 207 8(1 — cosh ay + sinh &y ) cosh? a,

1™ sinh4a; —sinh2a;” 2 sinh &y + cosh &

which are the same values obtained minimizing the
Hamiltonian.
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Variational approach
The effective Lagragian

o The Lagragian is minimized with respect to «, so that N(«) is
found:

4 cosh aq sinh? 207 No — 8(1 — cosh ay + sinh &y ) cosh? a,
sinh4a; —sinh 2y’ 2 sinh &y + cosh &

1=

which are the same values obtained minimizing the
Hamiltonian.

@ The relation w(a) is found upon minimization of the Lagragian
with respect to N: tanh?
w =2(secha; —1) + Ny ant 4

tanh 20q
2(1 —coshay) 1

= —~N, tanh P mod
sinha2+cosh¢x2+2 2tanha; (P mode)

(ST mode)
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Variational approach

Lagragian approach

Comparison with numerical pro:

Preliminaries
Malomed and Weinstein Variational Approach
w (Lagragian) approach

ST mode

—, numerical
% Lagragian
¢1 Lagragian

P mode
3
25 B
///
2 ¢, numerical
_ —, numerical
15 -
P - ¢1 Lagragian
" ¢2 Lagragian
osﬁ\m,,m —
c0 1 2 3 4 5




Variational approach

Lagragian approach

Preliminaries
Malomed and Weinstein Variational Approach
A new (Lagragian) approach

Comparison of the norm

ST mode

10
—— Numerical
----Lagragian
8
6 _—
3 —
5 _—
z _—
4 //
2
00 1 2 3 4 5

P mode
15 T
—— Numerical
---- Lagragian
// -
10 e
E 7
2 ~
/
5 / .
c0 1 2 3 4 5
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The DNLS map
Homoclinic orbit approach Approximated solutions

The DNLS map

and the saddle-point

@ The stationary DNLS can be written as a 2-D real map, making
the following change of variable:

Yn = ¢u, Xn = ¢Pp_1
so that

{ Xn+1 = Yn
Ynp1 = —Vp + (W +2)yu — xu
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The DNLS map
Homoclinic orbit approach Approximated solutions

The DNLS map

and the saddle-point

@ The stationary DNLS can be written as a 2-D real map, making
the following change of variable:

Yn = Pn, Xn = ¢Pp_1
so that
{ Xpn+1 = Yn
Ynp1 = —Vp + (W +2)yu — xu

@ This map has a saddle-point at x, = y,, = 0. In consequence,
there are a 1-D stable and a 1-D unstable manifold.
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The DNLS map
Homoclinic orbit approach Approximated solutions

The DNLS map

and the homoclinic tangle

@ The stable and unstable manifolds intersect and form a
homoclinic tangle. Each of the intersections correspond to a
localized solution.

(D. Hennig et al. PRE 54 (1996) 5788)
T. Bountis et al. Phys Lett A 268 (2000) 50
G. L. Alfimov et al. Physica D 194 (2004) 127)
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The DNLS map
Homoclinic orbit approach Approximated solutions

The DNLS map

and the homoclinic tangle

@ The stable and unstable manifolds intersect and form a
homoclinic tangle. Each of the intersections correspond to a
localized solution.

(D. Hennig et al. PRE 54 (1996) 5788)
T. Bountis et al. Phys Lett A 268 (2000) 50
G. L. Alfimov et al. Physica D 194 (2004) 127)

@ These intersection points corresponds to (¢_1, ¢p). P,~2 are

determined upon application of the map.
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The DNLS map
Homoclinic orbit approach Approximated solutions

The DNLS map

and the homoclinic tangle

@ The stable and unstable manifolds intersect and form a
homoclinic tangle. Each of the intersections correspond to a
localized solution.

(D. Hennig et al. PRE 54 (1996) 5788)
T. Bountis et al. Phys Lett A 268 (2000) 50
G. L. Alfimov et al. Physica D 194 (2004) 127)

@ These intersection points corresponds to (¢_1, ¢p). P,~2 are
determined upon application of the map.

o The tangle is symmetric with respect to the lines y = x and

y=—x.
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The DNLS map

ST and P modes

@ The ST and P modes are due to the intersection of the first
homoclinic windings.




The DNLS map
Homoclinic orbit approach Approximated solutions

The DNLS map

ST and P modes

@ The ST and P modes are due to the intersection of the first
homoclinic windings.

@ The homoclinic orbit considered for those modes is substantially
simplified.

Ay Byhy)

06 &)
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Summary

© Homoclinic orbit approach

@ Approximated solutions
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Homoclinic orbit approach Approximated solutions

The approximated unstable manifold

A third order polynomial

@ The unstable manifold can be approximated by a third order
polynomial:
y=Ax— P
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The DNLS map
Homoclinic orbit approach Approximated solutions

The approximated unstable manifold

A third order polynomial

@ The unstable manifold can be approximated by a third order
polynomial:
y=Ax— P

@ A is the eigenvalue of the linearized DNLS map fulfilling that

A>T @t + Ve
2
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The DNLS map
Homoclinic orbit approach Approximated solutions

The approximated unstable manifold

A third order polynomial

@ The unstable manifold can be approximated by a third order
polynomial:
y=Ax— P

@ A is the eigenvalue of the linearized DNLS map fulfilling that
A>1:
. 24 w) +yw(w+4)
N 2

o Comparison with the exact unstable manifold:

2 45
4- ~
o=1 - N 0=3
S 35- ’
15¢ yd 1 , \
/ \ 3 / \
25-
> 1 \ -
2
15
05 \ 1 \
\ /
0.5 \ B~
| \ | ¥
0! : 0! -
0 05 1 15 2 (] 05 1 15 2 25
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The DNLS map
Homoclinic orbit approach Approximated solutions

The approximated unstable and stable manifolds

Intersections

@ The unstable manifold can be transformed into the stable
manifold through the change x < y. Thus, the stable manifold is
given by:

x=Ay—y
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The DNLS map
Homoclinic orbit approach Approximated solutions

The approximated unstable and stable manifolds

Intersections

@ The unstable manifold can be transformed into the stable
manifold through the change x < y. Thus, the stable manifold is
given by:

x=Ay—y
@ Approximate solutions for the ST and P modes are given by the

intersections of both manifolds, leading to the equation:

x=AAx—x) — (Ax—x3)?
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The DNLS map
Homoclinic orbit approach Approximated solutions

The approximated unstable and stable manifolds

Intersections

@ The unstable manifold can be transformed into the stable
manifold through the change x < y. Thus, the stable manifold is
given by:

x=Ay—y°

@ Approximate solutions for the ST and P modes are given by the
intersections of both manifolds, leading to the equation:

x=AAx—x) — (Ax—x3)?

@ Solving this equation, we are able to find Ay, x1 and A;. x7 is
found by application of the map.
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The approximated unstable and stable manifolds

Intersections

@ For the ST mode,
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The DNLS map
Homoclinic orbit approach Approximated solutions

The approximated unstable and stable manifolds

Intersections

@ For the ST mode,

A = A+ 2/\2—4
X1 = Ao 2/\2_4
@ For the P mode,
Ay =vVA-1

x2=A+w-2)vA-1
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The DNLS map
Homoclinic orbit approach Approximated solutions

The approximated unstable and stable manifolds

Comparison with numerical profiles

ST mode P mode

3 3
2.5 — 25 9
/ —
-
M o] 2
—& numerical _ —, numerical
—, numerical

) homoclinic
[ homoclinic

—d; numerical
15
- % homoclinic
¢, homoclinic 7
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The DNLS map
Approximated solutions

Homoclinic orbit approach

Variational and homoclinic approximations

ST mode. Comparison with numerical profiles

3 ;
i numerical

- ---=homoclinic
25 T 0.8- Y Lagragian

numerical
homoclinic
Lagragian




The DNLS map
Approximated solutions

Homoclinic orbit approach

Variational and homoclinic approximations

P mode. Comparison with numerical profiles

3 1
25 P 08
T -
2 -
B ——numerical
---—homoclinic

numerical
homoclinic
Lagragian

Lagragian




Conclusions

Conclusions

@ The Variational Approach behaves better than the approximation
to the Homoclinic tangle.
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Conclusions

@ The Variational Approach behaves better than the approximation
to the Homoclinic tangle.

@ Furthermore, the Homoclinic approximation cannot be used for
calculating the norm.
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Conclusions

@ The Variational Approach behaves better than the approximation
to the Homoclinic tangle.

@ Furthermore, the Homoclinic approximation cannot be used for
calculating the norm.

o However, the Homoclinic approximation leads to simpler
expressions for the profiles.
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Conclusions

Conclusions

@ The Variational Approach behaves better than the approximation
to the Homoclinic tangle.

@ Furthermore, the Homoclinic approximation cannot be used for
calculating the norm.

o However, the Homoclinic approximation leads to simpler
expressions for the profiles.

@ None of the approaches fit for w — 0.
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Conclusions

Conclusions

@ The Variational Approach behaves better than the approximation
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Conclusions

@ The Variational Approach behaves better than the approximation
to the Homoclinic tangle.

@ Furthermore, the Homoclinic approximation cannot be used for
calculating the norm.

o However, the Homoclinic approximation leads to simpler
expressions for the profiles.

@ None of the approaches fit for w — 0.

@ Possible explanations:

o The profile is Gaussian for small w. This should be take into
account.

o The unstable manifold can be approximated by a 5th order
polynomial (but, a 10th degree equation must be solved)
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@ Thank you for your attention!
@ More information:
o Nonlinear Physics Group (GFNL) of Seville University:
http://www.grupo.us.es/gfnl
e My personal web page
http://www.personal.us.es/jcuevas
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