Breathers in Quantum Lattices

Faustino Palmero Acebedo. Nonlinear Physics Group.
Department of Applied Physics I. University of Seville, Spain palmero@us.es
http://www.pdipas.us.es/p/palmero/

HPC-EUROPA project at the EPCC in collaboration with the group of Professor J.C. Eilbeck. Department of Mathematics, Heriot-Watt University. Edinburgh (U.K.)

Summary

- Introduction.
- Quantum breathers. Hubbard models. Overview.
- Computational problems.
- Algebraic routines.
- Spectrum calculations.
- Some results.
- Rotational invariant systems.
- Non-rotational invariant systems.
- HPC-Europa project. Breathers in quantum lattices.
- Work in progress and perspectives.

Introduction

Discrete breathers in classical lattices

- Nonlinear lattices:

$$
H=\sum_{\vec{n}}\left(\frac{1}{2} m_{n} \dot{\vec{u}}_{\vec{n}}^{2}+V_{\vec{n}}\left(\vec{u}_{\vec{n}}\right)+C \sum_{\vec{m}} W_{\vec{n}, \vec{m}}\left(\vec{u}_{\vec{n}}, \vec{u}_{\vec{n}+\vec{m}}\right)\right)
$$

- Spatial localization by nonlinearity. General conditions for its existence and stability.
- Some analytical results. Standard numerical methods.
- Static and moving breathers.
- Experimental evidences.

Example: Klein-Gordon lattices

$$
H=\sum_{n}\left(\frac{1}{2} u_{n}^{2}+\frac{1}{2}\left(e^{-u_{n}}-1\right)^{2}+C\left(u_{n}-u_{n-1}\right)^{2}\right)
$$

Quantum breathers

Quantum equivalence of discrete breathers: open question.

- Hubbard models (fermions or bosons). QDNLS systems.

$$
\hat{H}=-\sum_{j=1}^{f^{D}} \frac{\gamma_{j}}{2} b_{j}^{\dagger} b_{j}^{\dagger} b_{j} b_{j}-\sum_{j=1}^{f^{D}} \sum_{p} \epsilon_{j p} b_{j}^{\dagger} b_{j+p} .
$$

Index j and p a D-dimensional index, ranges over the D-dimensional lattice).

- b_{j}^{\dagger} and b_{j} are standard bosonic (fermionic) creation and destruction operators.
- \hat{H} conserves the number of quanta $\hat{N}=\sum_{j=1}^{f} b_{j}^{\dagger} b_{j}$.

Number of states method

- Main problem: Determination of matrix representation of the Hamiltonian operator and its total/partial spectrum. Block-diagonalize the Hamiltonian for a fixed number of quanta N.
- The operators b_{j} and b_{j}^{\dagger} acts on number states basis $\left|\psi_{n}\right\rangle=\left[n_{1}, n_{2}, \ldots, n_{f}\right], N=\sum n_{i}$.
- General wave function: $\left|\Psi_{n}\right\rangle=\sum_{n} a_{n}\left|\psi_{n}\right\rangle$.

Example: 1D lattice, 4 sites and 7 quanta (bosons):
[2,0,2,3].

Algebraic routines

Quantum Mechanics in Maple

- For a given value of the number of quanta, determination of the number of states basis.
- Definition operators b_{j}^{\dagger} and b_{j} over a vector of the basis. Determination of matrix representation of the Hamiltonian operator.
- Main problem: Number of basis vectors p grows rapidly with n and f. For a one dimensional lattice of f sites and n bosons $p=(n+f-1)!/(f-1)!n!$.
- Project: Parallel Maple: J.C Eilbeck. Department of Mathematics, Heriot-Watt University, Edinburgh, U.K.

Rotational symmetry

In homogeneous quantum lattices with periodic boundary conditions, it is possible to block-diagonalize the Hamiltonian using eigenfunctions of the rotation operator \hat{R}, given states with fixed momentum \vec{k}. That implies a reduction of the size of the matrix.

- Some analytical results in some cases ($n=2$, infinite lattices, n large in infinite lattices ...). Numerics: standard numerical spectrum calculations.
- In general, if anharmonic parameter is high enough, the spectrum shows a characteristic band structure where the ground state is a localized in the sense that there exist a high probability to find the two quanta on the same site, but with equal probability at any site of the chain.

Spectrum

Example: Eigenvalues of the energy $E(k)$ as function of the momentum k for a QDNLS one-dimensional bosons system. $f=125$ and $n=2$.

On a lattice of length f, the unnormalized coefficients of the first f terms are equal to unity and the rest are $O\left(\gamma^{-1}\right)$. At $k=0$ for simplicity, the ground state is

$$
|\Psi\rangle=[20 \ldots 0]+[020 \ldots 0]+\cdots+[0 \ldots 02]+O\left(\gamma^{-1}\right) . .
$$

Non-rotational inv. systems (NRI)

Computational effort increases. Expectation value of momentum k

- Finite lattices.
- Localized impurities in anharmonic term:

$$
\hat{H}=-\sum_{j=1}^{f^{D}} \frac{\widetilde{\gamma}_{j}}{2} b_{j}^{\dagger} b_{j}^{\dagger} b_{j} b_{j}-\sum_{j=1}^{f^{D}} b_{j}^{\dagger} b_{j+1}
$$

where $\widetilde{\gamma}_{j}=\gamma, j \neq m$ and $\widetilde{\gamma}_{j}=\gamma_{1}$ for some fixed choice of impurity site(s) m.

- Long range interactions. Long range hopping terms:

$$
\hat{H}=-\sum_{j=1}^{f^{D}} \frac{\widetilde{\gamma}_{j}}{2} b_{j}^{\dagger} b_{j}^{\dagger} b_{j} b_{j}-\sum_{j=1}^{f^{D}} b_{j}^{\dagger} b_{j+1}-\alpha_{\ell, m}\left(b_{\ell}^{\dagger} b_{m}+b_{m}^{\dagger} b_{\ell}\right)
$$

Non-rotational invariant systems II

- Example: Two non-uniform chain geometries

- Random noise (Anderson localization)

$$
\hat{H}_{\text {ran }}=-\sum_{j=1}^{f^{D}} W_{j} b_{j}^{\dagger} b_{j},
$$

where W_{j} is a random parameter and $W_{j} \in[-W, W]$.

Some results in NRI

- Local inhomogeneities, due to geometrical factors and to long-range interactions or impurities in the anharmonicity parameter, break the translational invariance of the system and localize the ground state around a particular site of the chain.

QDNLS. Square wave function amplitudes corresponding to the ground state as a function of the positions n_{1}, n_{2} of the two bosons on the chain. We have $f=19$ and $\gamma=4$ and a point impurity at $\ell=10$. (a) Homogeneous chain, (b) $\gamma_{\text {im }}=4.1$, (c) $\gamma_{\text {im }}=4.4$.

HPC-Europa project

- Objective: Study of quantum breathers in QDNLS systems with non-rotational symmetry.
- Strategy:
- Optimize Maple programs to generate Hamiltonian matrix representation for a different non-rotational invariant systems.
- Parallel fortran code to calculate the partial spectrum of the system.

| Maple program |
| :--- | :--- | :--- | :--- |
| Standard PC |
| Workstation |
| Fortran subroutine |
| Hamiltonian matrix |
| Large sparse |
| Matrix |
| Harallel computer |
| Set of control |
| parameters values |
| Partial spectrum |

Results

- Maple routines: A careful optimization of algorithms has allowed to obtain the symbolic matrix representation of the Hamiltonian operator for translational and non-translational invariant systems, for one or two-dimensional systems, and with a number of sites and quanta high enough to obtain physical relevant results. In general the output is a very large hermitian sparse matrix.
- Example: One-dimensional non-translational invariant system with $f=7$ and $n=9$ bosons, with first-neighbor interaction, the metrics of the matrix is 5005×5005 and the number of nonzero elements 47047 .
- Fortran routine:Parallel Fortran program. We have used MPI and the parallel version of the free numerical library ARPACK (PARPACK).http://www.caam.rice.edu/ kristyn/parpack_home.html.

MPI-PARPACK

- PARPACK: Collection of Fortran 77 subroutines designed to solve large scale eigenvalue problems. Implicitly Restarted Arnoldi Method. In symmetric cases reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method.
- Designed to compute a few (neig) eigenvalues with user specified features.
- User should provide their own matrix-vector multiplication routine. Reverse communication interface.
- Matlab. Command eigs based on this package (serial version ARPACK).
- Objective: To write up a standard program, based in free software libraries, and highly portable.

Program structure

Test

- Test: One-dimensional non-translational invariant system with $f=7$ and $n=9$ bosons, first-neighbor interaction.
- Matrix 5005×5005. Nonzero elements 47047 and 100 eigenvalues/eigenvectors (largest magnitude). No structure (fractal-like structure!). 52 processor Sun Fire E15k, located at the EPCC in Edinburgh.

N. proc	1	2	3	4	8
Time (s)	19.38	10.35	7.10	6.55	5.42

Open problems

- Analytical results?.
- Differences with harmonic localization (Anderson localization). Hubbard models with diagonal disorder Question: Anderson localization/Anharmonic localization. Two faces of the same phenomenon?
- Classical limit.
- Soliton wave packets.

Nanorings structures

- An electron and a hole. Bound state.
- Magnetic flux. Aharonov-Bohm effect.

Bibliography

- Discrete breathers in classical systems
- S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998); Physica D 119, special volume edited by S. Flach and R. S. Mackay (1999): P. G. Kevrekidis, K.Ø. Rasmussen and A. R. Bishop, Int. J. Mod. Phys. B, 15, 2833 (2001); focus issued edited by Yu. S. Kivshar and S. Flach, Chaos 13, 586 (2003), Localization and Energy Transfer in Nonlinear Systems, eds L. Vázquez, R. S. MacKay, M. P. Zorzano (World Scientific, Singapore, 2003).
- Quantum breathers
- General: A. C. Scott, J. C. Eilbeck and H. Gilhøj, Physica D 78, 194 (1994), J. Dorignac, J.C. Eilbeck, M. Salerno, and A. C. Scott, Phys. Rev. Letts. 93 025504, (2004). V. Fleurov, Chaos 13, 676 (2003); R. S. MacKay, Physica A 288, 174 (2000).

Bibliography II

- Quantum breathers
- Non-translational invariant systems: JC Eilbeck and F Palmero. Quantum breathers in an attractive fermionic Hubbard model. Nonlinear Waves: Classical and Quantum Aspects, (eds. F. Kh. Abdullaev and V. V. Konotop), Kluwer: Amsterdam, 399-412(2004). JC Eilbeck and F Palmero. Trapping in quantum chains. Phys. Lett. A, 331(3-4):201-208(2004). FR Romero, JFR Archilla, F Palmero, B Sánchez-Rey, A Alvarez, J Cuevas and JM Romero. Classical and quantum nonlinear localized excitations in discrete systems. Invited review chapter, to appear in Recent Research Developments in Physics, Transworld Research Network, India (2005)
- Nanoring structures
- F Palmero, J Dorignac, JC Eilbeck, RA Römer. Aharonov-Bohm effect for an exciton in a finite width nano-ring. Phys. Rev. B, 72, 075343 (2005).

Acknowledgements

- Thanks to the EPCC team!
- Professor Eilbeck and colleagues at Heriot-Watt University.

