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Introduction

Discrete breathers in classical lattices
Nonlinear lattices:

H =
∑
�n

(
1
2
mn�̇u2

�n + V�n(�u�n) + C
∑
�m

W�n,�m(�u�n, �u�n+�m)

)

Spatial localization by nonlinearity. General conditions for its
existence and stability.

Some analytical results. Standard numerical methods.

Static and moving breathers.

Experimental evidences.
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Example: Klein–Gordon lattices

H =
∑

n

(
1

2
u̇2

n +
1

2
(e−un − 1)2 + C(un − un−1)

2
)
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Quantum breathers

Quantum equivalence of discrete breathers: open
question.

Hubbard models (fermions or bosons). QDNLS systems.

Ĥ = −
fD∑
j=1

γj

2
b†jb

†
jbjbj −

fD∑
j=1

∑
p

εjpb
†
jbj+p.

Index j and p a D-dimensional index, ranges over the
D-dimensional lattice).

b†j and bj are standard bosonic (fermionic) creation and
destruction operators.

Ĥ conserves the number of quanta N̂ =
∑f

j=1 b†jbj .
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Number of states method

Main problem: Determination of matrix representation
of the Hamiltonian operator and its total/partial
spectrum. Block-diagonalize the Hamiltonian for a
fixed number of quanta N .

The operators bj and b†j acts on number states basis
|ψn〉 = [n1, n2, ..., nf ],N =

∑
ni.

General wave function:|Ψn〉 =
∑

n an|ψn〉.
Example: 1D lattice, 4 sites and 7 quanta (bosons):
[2,0,2,3].

2 0 2 3
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Algebraic routines

Quantum Mechanics in Maple

For a given value of the number of quanta, determination of the
number of states basis.

Definition operators b†j and bj over a vector of the basis.
Determination of matrix representation of the Hamiltonian
operator.

Main problem: Number of basis vectors p grows rapidly with n and
f . For a one dimensional lattice of f sites and n bosons
p = (n + f − 1)!/(f − 1)!n!.

Project: Parallel Maple: J.C Eilbeck. Department of Mathematics,
Heriot-Watt University, Edinburgh, U.K.
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Rotational symmetry

In homogeneous quantum lattices with periodic boundary conditions, it
is possible to block–diagonalize the Hamiltonian using eigenfunctions
of the rotation operator R̂, given states with fixed momentum �k. That
implies a reduction of the size of the matrix.

Some analytical results in some cases (n = 2, infinite lattices, n

large in infinite lattices ...). Numerics: standard numerical
spectrum calculations.

In general, if anharmonic parameter is high enough, the spectrum
shows a characteristic band structure where the ground state is a
localized in the sense that there exist a high probability to find the
two quanta on the same site, but with equal probability at any site
of the chain.

Breathers in Quantum Lattices – p. 8/2



Spectrum

Example: Eigenvalues of the energy E(k) as function of the momentum k for a QDNLS
one–dimensional bosons system. f = 125 and n = 2.
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On a lattice of length f , the unnormalized coefficients of the first f terms are equal to
unity and the rest are O(γ−1). At k = 0 for simplicity, the ground state is
|Ψ〉 = [20 . . . 0] + [020 . . . 0] + · · · + [0 . . . 02] + O(γ−1)..
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Non-rotational inv. systems (NRI)

Computational effort increases. Expectation value of momentum k

Finite lattices.

Localized impurities in anharmonic term:

Ĥ = −
fD∑
j=1

γ̃j

2
b†jb

†
jbjbj −

fD∑
j=1

b†jbj+1,

where γ̃j = γ, j �= m and γ̃j = γ1 for some fixed choice of impurity
site(s) m.

Long range interactions. Long range hopping terms:

Ĥ = −
fD∑
j=1

γ̃j

2
b†jb

†
jbjbj −

fD∑
j=1

b†jbj+1 − α�,m(b†�bm + b†mb�).
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Non-rotational invariant systems II

Example: Two non-uniform chain geometries

(a) (b)

α

Random noise (Anderson localization)

Ĥran = −
fD∑
j=1

Wjb
†
jbj ,

where Wj is a random parameter and Wj ∈ [−W, W ].
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Some results in NRI

Local inhomogeneities, due to geometrical factors and to long–range interactions
or impurities in the anharmonicity parameter, break the translational invariance of
the system and localize the ground state around a particular site of the chain.
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QDNLS. Square wave function amplitudes corresponding to the ground state as a
function of the positions n1, n2 of the two bosons on the chain. We have f = 19

and γ = 4 and a point impurity at � = 10. (a) Homogeneous chain, (b) γim = 4.1,
(c) γim = 4.4.
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HPC-Europa project

Objective: Study of quantum breathers in QDNLS systems with non–rotational

symmetry.

Strategy:

Optimize Maple programs to generate Hamiltonian matrix representation for a

different non-rotational invariant systems.

Parallel fortran code to calculate the partial spectrum of the system.

Maple program

Standard PC 

Workstation

Hamiltonian matrix

Large sparse 
Matrix

Fortran subroutine

Fortran code

Parallel computer

Set of control 
parameters values

Partial spectrum
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Results

Maple routines: A careful optimization of algorithms has allowed to
obtain the symbolic matrix representation of the Hamiltonian
operator for translational and non–translational invariant systems,
for one or two–dimensional systems, and with a number of sites
and quanta high enough to obtain physical relevant results. In
general the output is a very large hermitian sparse matrix.

Example: One–dimensional non–translational invariant system with f = 7 and

n = 9 bosons, with first–neighbor interaction, the metrics of the matrix is

5005 × 5005 and the number of nonzero elements 47047.

Fortran routine:Parallel Fortran program . We have used MPI and
the parallel version of the free numerical library ARPACK
(PARPACK).http://www.caam.rice.edu/ kristyn/parpack_home.html.
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MPI-PARPACK

PARPACK: Collection of Fortran 77 subroutines designed to solve
large scale eigenvalue problems. Implicitly Restarted Arnoldi
Method. In symmetric cases reduces to a variant of the Lanczos
process called the Implicitly Restarted Lanczos Method.

Designed to compute a few (neig) eigenvalues with user specified
features.

User should provide their own matrix–vector multiplication
routine. Reverse communication interface.

Matlab. Command eigs based on this package (serial version
ARPACK).

Objective: To write up a standard program, based in free software
libraries, and highly portable.
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Program structure

Input
Broadcast variables

Postproccessing
Output

Subroutine 
Vector/Matrix product

(Parallel routine)
Iterations

Numerical Hamiltonian
Distribution of the work
(Non structured matrix)
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Test

Test: One–dimensional non–translational invariant system with f = 7 and n = 9

bosons, first–neighbor interaction.

Matrix 5005 × 5005. Nonzero elements 47047 and 100

eigenvalues/eigenvectors (largest magnitude). No structure (fractal–like
structure!). 52 processor Sun Fire E15k, located at the EPCC in Edinburgh.

N. proc 1 2 3 4 8

Time (s) 19.38 10.35 7.10 6.55 5.42
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Open problems

Analytical results?.

Differences with harmonic localization (Anderson localization).
Hubbard models with diagonal disorder Question: Anderson
localization/Anharmonic localization. Two faces of the same
phenomenon?.

Classical limit.

Soliton wave packets.
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Nanorings structures

An electron and a hole. Bound state.

Magnetic flux. Aharonov-Bohm effect.

Φ 
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