

Bifurcation Analysis of Discrete Breathers in a Nonlinear bent chain of oscillators

Jesús Cuevas, Juan F. Rodriguez-Archilla Francisco Romero, Caisar Katerji

> Nonlinear Physics Group Universidad de Sevilla

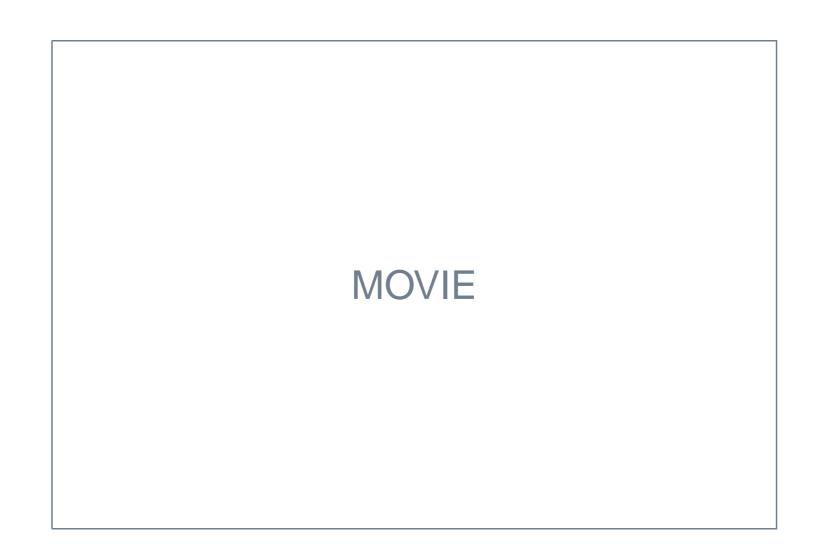
Panayotis G. Kevrekidis

Department of Mathematics and Statistics University of Massachusetts (USA)

- Concept of discrete breather.
- Discrete breathers in homogeneous lattices.
 Bifurcations.
- Discrete breathers in bent chains.
 Bifurcations.
- Conclusions.

Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators - p.1/15

Discrete breathers



Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.2/15

Discrete breathers

Different frameworks:

Discrete Nonlinear Klein–Gordon Equation:

$$\ddot{u}_n + V'(u_n) + C\sum_m W'(u_n, u_m) = 0$$

- Fermi–Pasta–Ulam model: $V(u_n) = 0 \forall n$.
- Discrete Nonlinear Schrödinger Equation:

$$i\dot{u}_n + \gamma |u_n|^2 u_n - C(2u_n - u_{n+1} - u_{n-1}) = 0$$

Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators - p.3/15

MacKay-Aubry theorem

- **R.S.** MacKay and S. Aubry. Nonlinearity **7** (1994) 1623-1643.
- If a periodic orbit of $H = p^2/2 + V(u)$ with action I_0 is non-resonant and anharmonic, then the periodic orbit of $\ddot{u}_n + V'(u_n) + C(2u_n - u_{n+1} - u_{n-1}) = 0$ at C = 0 given by $x_0(t) = X(I_0, \omega_b(I_0)t)$ and $x_n(t) = 0$ for all sites $n \neq 0$ has a locally unique continuation as a periodic orbit of $\ddot{u}_n + V'(u_n) + C(2u_n - u_{n+1} - u_{n-1}) = 0$ of the same period $T = 2\pi/\omega_b(I_0)$ for C small enough.
- The C^1 norm of the oscillation on site n for that periodic solution decays exponentially as $n \to \infty$, as long as DF remains invertible.

Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.4/15

Linear stability

Dynamical equations of a perturbation $u_n \rightarrow u_n + \xi_n$ ($\xi \in C^2$):

$$\ddot{\xi}_n(t) + V''(u_n(t))\xi_n(t) - C\sum_i W''(u_{n+i}(t) - u_n(t))(\xi_{n+i}(t) - \xi_n(t)) + C\sum_i W''(u_n(t) - u_{n-i}(t))(\xi_n(t) - \xi_{n-i}(t)) = 0$$

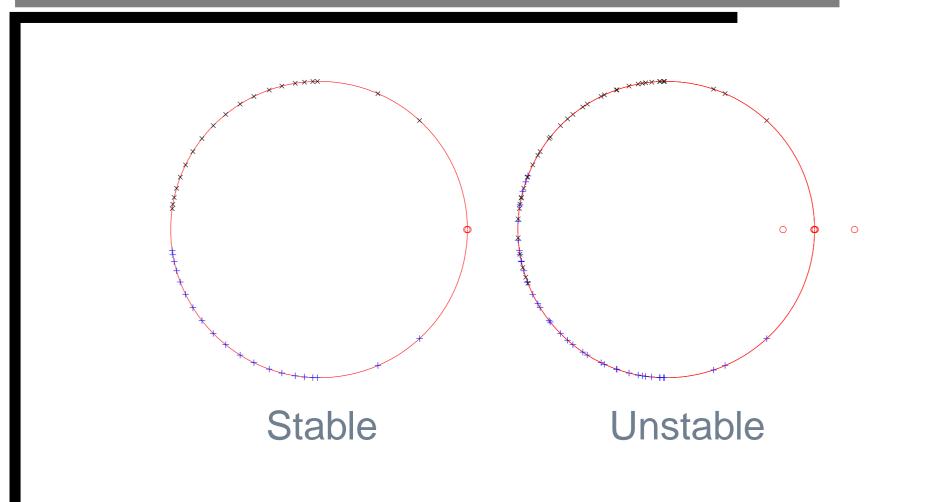
Linear stability \rightarrow Floquet analysis:

$$\left[\begin{array}{c} \xi(T)\\ \dot{\xi}(T) \end{array}\right] = \mathcal{F}_o \left[\begin{array}{c} \xi(0)\\ \dot{\xi}(0) \end{array}\right]$$

Floquet's operator is real and symplectic:

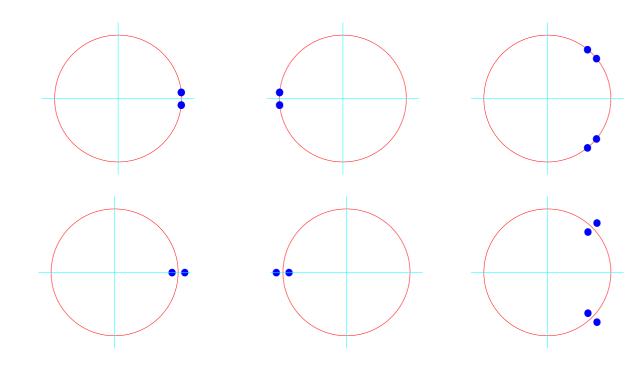
- A discrete breather in a Hamiltonian Klein–Gordon lattice is linear stable if and only if all eigenvalues are on the unit circle.

Linear stability



Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.6/15

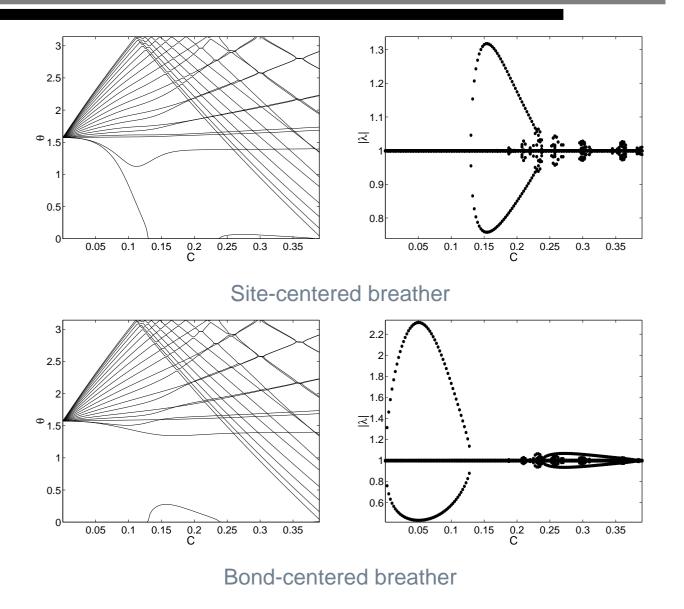
Bifurcations



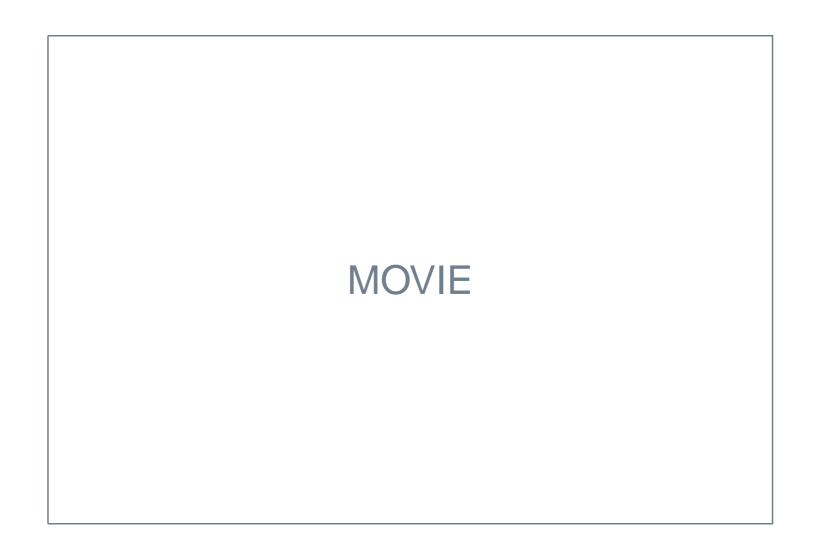
Harmonic Subharmonic Oscillatory

Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.7/15

Stability exchange (Marginal mode)



Mobile breather

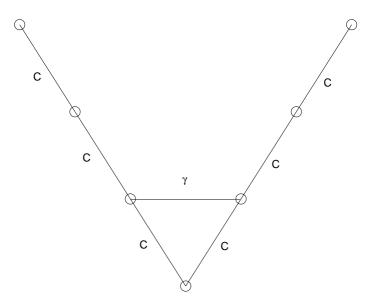


Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.9/15

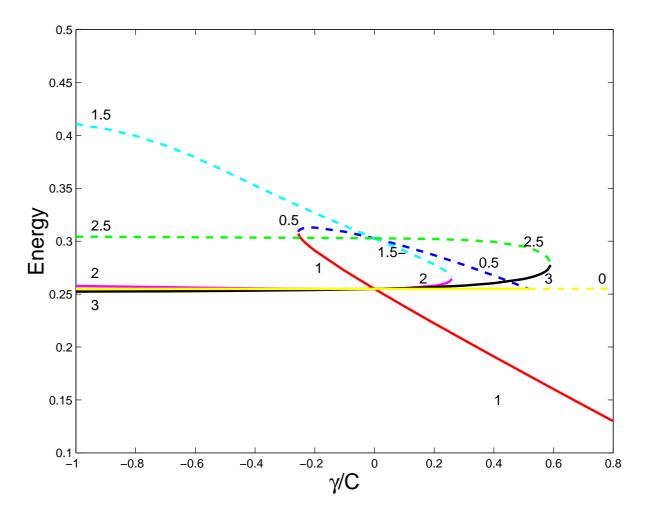
Bent (wedged) chain

$$\ddot{u}_n + V'(u_n) + C\sum_m (2u_n - u_{n+1} - u_{n-1}) + \gamma [(u_n - u_{n-2})\delta_{n,1} + (u_n - u_{n+2})\delta_{n,-1}] = 0$$

- \square u_n : Out-of-plane displacements.
- \square n = 0: Vertex of the wedge.

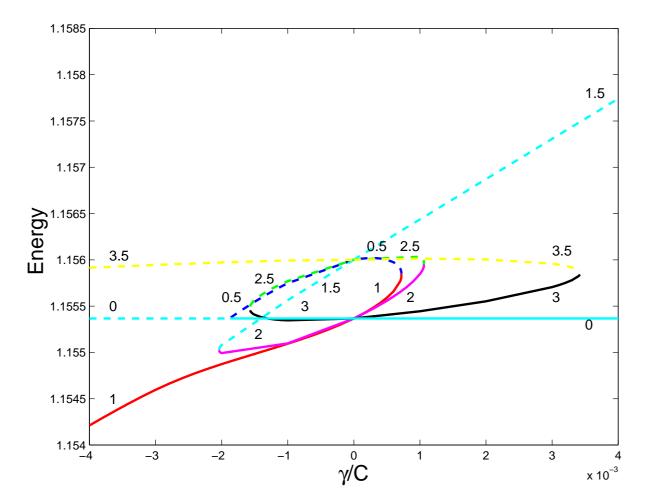


Bifurcations. ϕ^4 potential



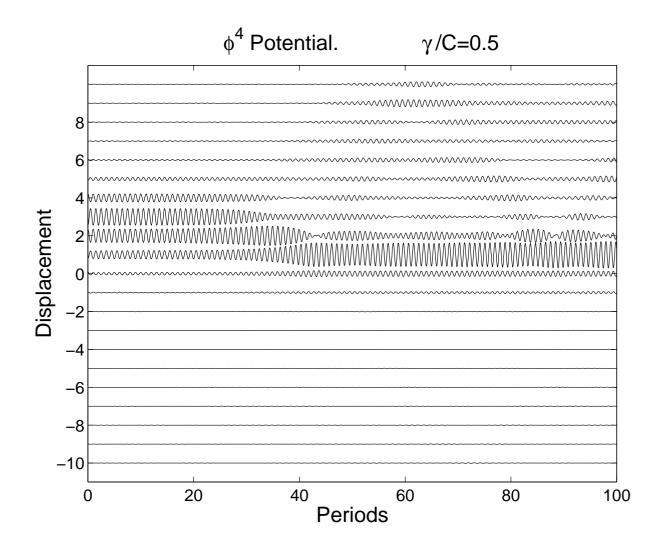
Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.11/15

Bifurcations. Morse potential



Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators -p.12/15

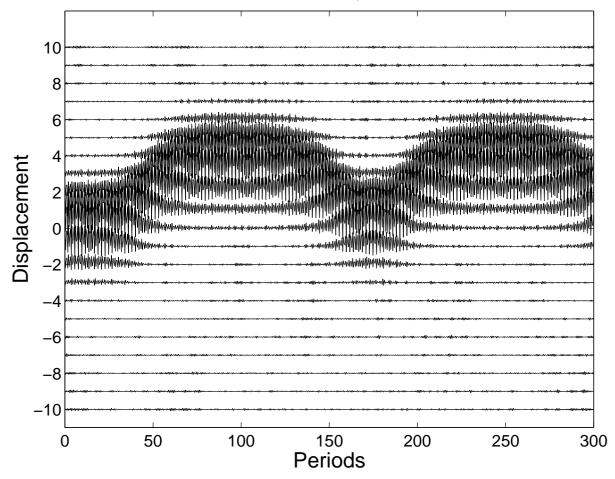
Switching in ϕ^4 potential



Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators - p.13/15

Mobility in Morse potential

Morse Potential. γ /C=-0.007



Conclusions

- Homogeneous Klein–Gordon lattices: Summary of (stability) bifurcations.
- Wedged Klein–Gordon chains: Ground state changes with γ .
 - ϕ^4 potential: Switching.
 - Morse potential: Spontaneous mobility.
- Nonlinear Physics Group website:

http://www.us.es/gfnl

Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.15/15