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Discrete breathers

MOVIE
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Discrete breathers

Different frameworks:

Discrete Nonlinear Klein–Gordon Equation:

ün + V ′(un) + C
∑

m

W ′(un, um) = 0

Fermi–Pasta–Ulam model: V (un) = 0 ∀n.

Discrete Nonlinear Schrödinger Equation:

iu̇n + γ|un|
2un − C(2un − un+1 − un−1) = 0

un ∈ E2
s
(ωb); V, W ∈ C2; n ∈ Z

d.
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MacKay-Aubry theorem

R.S. MacKay and S. Aubry. Nonlinearity 7 (1994) 1623-1643.

If a periodic orbit of H = p2/2 + V (u) with action I0 is
non-resonant and anharmonic, then the periodic orbit of
ün + V ′(un) + C(2un − un+1 − un−1) = 0 at C = 0 given by
x0(t) = X(I0, ωb(I0)t) and xn(t) = 0 for all sites n 6= 0 has a
locally unique continuation as a periodic orbit of
ün + V ′(un) + C(2un − un+1 − un−1) = 0 of the same period
T = 2π/ωb(I0) for C small enough.

The C1 norm of the oscillation on site n for that periodic solution
decays exponentially as n → ∞, as long as DF remains invertible.
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Linear stability

Dynamical equations of a perturbation un → un + ξn (ξ ∈ C2):

ξ̈n(t) + V ′′(un(t))ξn(t) − C
∑

i

W ′′(un+i(t) − un(t))(ξn+i(t) − ξn(t)) +

+C
∑

i

W ′′(un(t) − un−i(t))(ξn(t) − ξn−i(t)) = 0

Linear stability → Floquet analysis:





ξ(T )

ξ̇(T )



 = Fo





ξ(0)

ξ̇(0)





Floquet’s operator is real and symplectic:

λ, 1/λ, λ∗, 1/λ∗ are eigenvalues.

A discrete breather in a Hamiltonian Klein–Gordon lattice is linear stable if
and only if all eigenvalues are on the unit circle.
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Linear stability

Stable Unstable
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Bifurcations

Harmonic Subharmonic Oscillatory
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Stability exchange (Marginal mode)
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Mobile breather

MOVIE

Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.9/15



Bent (wedged) chain

ün+V ′(un)+C
∑

m

(2un−un+1−un−1)+γ[(un−un−2)δn,1+(un−un+2)δn,−1] = 0

un: Out-of-plane displacements.

n = 0: Vertex of the wedge.
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Bifurcations. φ4 potential

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

03

2.5

0.5
2

1.5−

0.5

1

2.5

1.5

2

3

E
ne

rg
y

γ/C

Bifurcation analysis of discrete breathers in a nonlinear bent chain of oscillators – p.11/15



Bifurcations. Morse potential
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Switching in φ4 potential
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Mobility in Morse potential
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Conclusions

Homogeneous Klein–Gordon lattices:
Summary of (stability) bifurcations.

Wedged Klein–Gordon chains: Ground state
changes with γ.

φ4 potential: Switching.
Morse potential: Spontaneous mobility.

Nonlinear Physics Group website:

http://www.us.es/gfnl
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