Influence of moving breathers on vacancies migration

J Cuevas, C Katerji, B Sánchez-Rey and A Álvarez

Non Linear Physics Group of the University of Seville Department of Applied Physics I *February 21st, 2003*

Outline

• Previous: Experimental evidence

• Model

• Vacancy

• MB & vacancy

• Results

Experimental evidence: *defects migrate*

<u>The model</u>

Frenkel-Kontorova + anharmonic interaction

 $V(x) = \frac{L^2}{4p^2} \left[1 - \cos\left(\frac{2px}{L}\right) \right]$

 $W(x) = \frac{1}{2} [\exp(-b(x-a)) - 1]^2$

The Hamiltonian:

=

$$H = \sum_{n} \frac{1}{2} \dot{x}_{n}^{2} + V(x_{n}) + C'W(x_{n} - x_{n+1})$$

$$\sum_{n} \frac{1}{2} \dot{x}_{n}^{2} + \frac{L^{2}}{4p^{2}} \left[1 - \cos\left(\frac{2px_{n}}{L}\right)\right] + C' \left[\frac{1}{2} \left[\exp(-b(x_{n+1} - x_{n} - a)) - 1\right]^{2} + \frac{1}{2} \left[\exp(-b(x_{n} - x_{n-1} - a)) - 1\right]^{2}$$

The linearized equations:

$$\ddot{x}_n + x_n + b^2 C' (2x_n - x_{n-1} - x_{n+1}) = 0$$

Plane waves (phonons)
$$\longrightarrow x_n(t) = x_0 e^{i(qn - \mathbf{w}_{ph}t)}$$

Dispersion relation $\longrightarrow \mathbf{w}_{phh}^{22} = \mathbf{w}_{00}^{22} + 4 \frac{h^2}{22} \operatorname{Csissin}^2 \left(\frac{2qq}{22} \right), \quad C = b^2 \operatorname{Csissin}^2 \left(\frac{qq}{22} \right), \quad C = b^2 \operatorname{Csissin}^2 \left(\frac{qq}{2} \right)$

W

The vacancy

The moving breather

K Forinash, T Cretegny and M Peyrard.

Local modes and localization in a multicomponent nonlinear lattices. Phys. Rev. E, 55:4740, 1997.

Three types of phenomena

i) The vacancy moves backwards.

ii) The vacancy moves forwards.

iii) The vacancy remains at its site.

i) The most probably is that the vacancy moves backwards

ii) But the vacancy can move forwards

iii) And the vacancy can stay motion-less

The coupling forces

hifurnation

Amplitude maxima of a vacancy breather

Amplitude maxima of a vacancy breather

Conclusions

- The moving breathers can move vacancies.
- The behaviour is very complex and it depends of the values of the coupling.
- The changes of the probabilities of the different movements of the vacancies are related with the existence of bifurcations.
- Is there a more rich complexity from 1-dim to 2-dim ?

Thank you very much.