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Abstract

A vacancy defect is described by a Frenkel–Kontorova model with a discom-
mensuration. We study the mechanism that can put into movement vacan-
cies through the interaction of moving localized excitations (moving discrete
breathers). We establish that the width of the interaction potential must be
larger than a threshold value in order that the vacancy can move forward and
that, for a certain range of parameters, there exists a threshold value of the
translational energy of the moving breather. The occurrence of these phenom-
ena are related to the properties of linear and nonlinear modes centred at the
particles adjacent to the vacancy.
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Experimental evidence: defects migration

The interaction of moving localized excitations can be connected with certain
phenomena observed in crystals recently [1].

In fact (see the scheme below), it has been observed that, when a silicon
crystal (1) is irradiated with an ion beam (2), after some time the defects are
pushed towards the edges of the sample (3), so some sort of cleaning of the
defects takes place (4).

The authors suggest that mobile localized excitations created in atomic
collisions are a possible mechanism for the movement of defects.

Experimental scheme
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The model

As stated above, a simple model which allows to describe a defect in a chain
of atoms is the Frenkel–Kontorova chain [2]. The Hamiltonian is given by:

H =
∑

n

1

2
ẋ2

n + V (xn) + CW (xn − xn+1).

And the dynamical equations are:

F ({xn}) ≡ ẍn + V ′(xn) + C [W ′(xn − xn+1)−W ′(xn−1 − xn)] = 0,

where {xn} are the absolute coordinates of the particles; C is the coupling
constant; V (x) is the periodic substrate potential, which is chosen of the sine-
Gordon type; andW (x) is the interaction potential, which is of the Morse type.

D is the depth of the interaction potential and L and a are the distances
between neighbouring minima of the respective potentials. b is a parameter
which is related to the width of the interaction potential, so that the interaction
between particles is stronger when b decreases.
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The moving breather

The basic phenomenon we are going to investigate in this work is how the
width of the potential b−1 affects to the interaction of moving breathers with
defects.

Thus, we consider some families of moving breathers with different values
of b and velocities, which are launched towards the defects, always located to
the right of the breather. This moving breather is generated using a simplified
form of the marginal mode method [3,4],which consists basically in adding to the
velocity of a stationary breather a perturbation which breaks its translational
symmetry, and letting it evolve in time.

The initial perturbation, {~Vn}, is chosen as:

~V = λ(. . . , 0,−1/
√
2, 0, 1/

√
2, 0, . . .),

where the nonzero values correspond to the neighbouring sites of the initial
centre of the breather (see the pattern). Thus the translational velocity of
the breather is K = λ2/2. This choice of the perturbation allows it to be
independent on the parameters of the system b or C. If the pinning mode were
chosen as an initial perturbation, it would depend on the parameters of the
system.
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Defects modelling

We consider two types of zero-dimensional defects: vacancies and interstitials.
The dynamics of these structures is described by antikinks and kinks solutions,
respectively [5,6]. In the following scheme is represented the Frenkel–Kontorova
model with sine-Gordon potential for different defects:

(d)

(c)

(b)

(a)

where:

(a) is a single vacancy;

(b) are two adjacent vacancies;

(c) are two disjoint vacancies;

(d) is an interstitial.

Single vacancy

• In this case, the breather excites the particle located at the left of the
vacancy. As the well corresponding to the vacancy is empty, this particle
can either:

– remain at rest,

– or jump to the vacancy site (i.e. the vacancy jumps backwards).

• However, if the interaction potential is wide enough, the particle at right
of the vacancy, can feel the effect of the moving breather that makes the
particle at the left of the vacancy vibrate with high amplitude and it can
also jump to the vacancy site (i.e. the vacancy moves forwards).
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Single vacancy

• Numerical simulations show that the occurrence of the three different cases
depends highly on the relative phase of the incoming breather and the
particles adjacent to the vacancy.

• In the following graphics, the energy density is represented for the particles
in the interaction moving breather–vacancy.
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Single vacancy
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• The incoming breather only can pass through the vacancy if the vacancy
moves backwards.
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Single vacancy

Several simulations have been performed for each value of b. In particular,
we have chosen 601 values of the parameter λ uniformly distributed in the
interval (0.10, 0.16). This dependence is qualitatively similar to the obtained if
a Gaussian distribution of λ.

We can observe in Figures (2)
and (3) the probability of the
movement of the vacancy for
some values of the parameter C.

Furthermore, it can be ob-
served that, for b higher than a
critical value bforw, the vacancy
cannot move forwards, i.e., the
forwards movement only occurs
if the interaction potential is
wide enough.

With the aid of the fig-
ures, it can be deduced
that bforw ∈ (0.65, 0.70) for
C = 0.5 and bforw ∈ (0.50, 0.55)
for C = 0.4.
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Fig 2: Probability that the vacancy remains at

its site (blue), moves backwards (black), and

moves forwards (green), for C = 0.5.
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Fig 3: Probability that the vacancy remains

at its site (blue), moves backwards (red), and

moves forwards (green), for C = 0.4.
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Threshold translational energy

Another important phenomenon is that for b ∈ (bmin
barr, b

max
barr), the translational

energy of the breather must be higher than a critical value Kc in order that the
vacancy can move. Furthermore, the relation bforw ∈ (bmin

barr, b
max
barr) is held.

The dependence of Kc with respect to b is shown in Figure 4.
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Fig. 4: Dependence of the threshold translational energy of the moving breather for a vacancy

to be put into movement (Kc) with respect to b, for C = 0.5 (circles) and C = 0.4 (squares).

Defect breathers

Defect breathers are exact vibrating
solutions obtained by exciting the par-
ticles closest to the defect, and three
different kinds of them are considered:
1-site defect breathers (1DB), consist-
ing on an only excited particle adjacent
to the defect; 2-site defect breathers,
which consist on the two particles ad-
jacent to the defect excited at the same
time, so that they can vibrate in-phase
(2DBp) or anti-phase (2DBa).

If we define the variables yn = xn − x
(0)
n

which represent the deviation of the
particles with respect to their equi-
librium positions, it is possible to
construct the bifurcation diagram
(see Figure 5).
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Fig. 5: Bifurcation diagram for the
vacancy defect. The bifurcation variable
is ∆ = yn

−

v
− yn

+
v
, for C = 0.5.
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Conclusions

• The interaction moving breather-vacancy is highly dependent of the relative
phase of the incoming breather and the particles adjacent to the vacancy.

• For some values of the width of the interaction potential, the translational
energy of the breather must be higher than a critical value Kc in order that
the vacancy can move. It is explained by the existence of unstable defect
breathers.

• The existence of linear defect modes is needed for the forward movement
of the vacancy.

• The incident breather always losses energy.

• The breather can be reflected, trapped (with emission of energy) or re-
fracted by the vacancy, in analogy to the interaction moving breather-mass
defect [8].

• The refraction of the breather (i.e. the breather can pass through the
vacancy) can only take place if the vacancy moves forwards.
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