LOCNET TASK 6 Randomness and nonlinearity Coordinator: JFR Archilla

Group of Nonlinear Physics (GFNL), University of Sevilla, Spain http://www.us.es/gfnl

Work supported during 2002 by the European Commission under the RTN project, HPRN-CT-1999-00163 (LOCNET)

Three types of localization

- Anderson localization
 - Disordered systems
 - Linear localized modes
 - Prevents energy transfer
 - Prevents charge transfer
- Localization due to inhomogeneities
 - Localized linear modes at the inhomogeneities
 - Can act as a energy trap
- Nonlinear localization
 - Due to nonlinearity and discreteness
 - Breathers
 - Moving breathers

Two types of disorder

- Spatial disorder
 - Random masses and molecular bonds
 - Media interfaces
 - Isolated impurities
 - Shape, bending points
- Temporal disorder
 - Temperature or noise
 - Random influence of the surrounding media
 - Do static breathers survive?
 - Do moving breathers survive?

DNA and biopolymers

Systems of choice

- Composed of large groups or atoms
- Macroscopic description
- Essentially monodimensional
- Disordered
- Shape and conformation
- Energy transfer: information
- Energy accumulation:
 - DNA denaturation
 - Biological function
- Charge transfer: bioconductivity

Two main types of models

- Klein–Gordon models
 - Internal degrees of freedom
 - Base pair stretching in DNA
 - C=0 vibrations in proteins

$$\ddot{u}_n = -V'_n(u_n) - \varepsilon[(u_{n+1} - u_n) - (u_n - u_{n-1}]]$$

- FPU models
 - No internal degrees of freedom
 - Crystals and polymers

$$\ddot{u}_n = -\varepsilon [W'(u_{n+1} - u_n) - W'(u_n - u_{n-1}]]$$

Spatial randomness

- Heraklion, Saclay
 - Continuation of breathers inside the phonon band
 - Intraband discrete multibreathers
 - Energy propagation is restored by the nonlinearity
 - Physica, 2000, Phys Rev Lett, 2000
- Sevilla
 - Continuous path from nonlinearity to disorder
 - Pitchfork: localization if preserved
 - Saddle–node: breather annihilation
 - J. Phys. A, 2001

Anderson localization

• 2D disordered linear system

Inhomogeneities I

- Lyngby and Sevilla
 - Effect of shape and LRI in models for DNA and alpha-helix proteins
 - DNLS and Klein-Gordon models
 - Bending points can act as a trap for excitations
 - Nonlinear impurity modes
 - Conditions for trapping at a impurity
 - Effect of DNA helicity
 - Characteristic frequencies at the bending points
 - Phys. Rev. E, 2000, 2001, 2002; J. Phys. Cond. Matter, 2000; Jou. Phys. A, 2001, 2002(2); Phys. Rev. E, 2001(2), 2002; Phys. Lett. A. 2002;

Bending points I

• Linear curved alpha—helix proteins

Bending points II

- Interaction inhomogeneity–nonlinearity
- Nonlinear curved alpha–helix proteins

Inhomogeneities II

- Barcelona, Heraklion
 - Breather mobility in FPU models for biopolymers
 - Energy transport across bending points
 - Conditions for transport on chains with different masses
 - Curved segments as gates
 - Conditions for trapping, re¤exion, transmision or spliting in terms of the Peierls–Nabarro potential.
 - Jou. Phys. A, 2001; Europhys. Lett. 2002; Phys. Rev. E, 2002 (2)

Temporal disorder

- Barcelona, Heraklion
 - FPU models for curved biopolymers
 - Dissipation
 - Temperature
 - Survival of breather mobility
 - Jou. Phys. A, 2001; Europhys. Lett. 2002; Phys. Rev. E, 2002.
- Saclay, Heraklion
 - Thermalization of phonons leading to discrete breathers
 - Eur. Phys. Jou. 2002.

Disordered systems

- Berlin, Sevilla
 - DNA 3D model for charge transport
 - Spatial disorder due to random distribution of base pairs
 - Structural (shape) disorder due to interaction with the media
 - Charge transport mediated by polarobreathers survives
 - Coherent with experimental data
 - Physica D, 2002.

Charge transport

- Electron wave function
- Disordered DNA

Some projets

- Lyon Actual sequences in DNA
- Warwick, Barcelona, Zaragoza Noise induced conductivity on charge density wave materials
- Lyngby, Sevilla Moving breathers and DNA interfaces
- Edinburgh, Sevilla Interaction of moving breathers with vacancies and other defects