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Outline

 Why study this?  Low energy?  Really?

 Germanium – ultrapure material

 Hydrogen in germanium

 DLTS – Deep Level Transient Spectroscopy

 An experiment: ICP annealing of E-center

 Summary and conclusions
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Why low energy?

 Why study this?  Low energy?  Really?

 Impacts generate Moving Intrinsic Localized 

Modes (ILMs) or Discrete Breathers (DBs) in Ge

 ILMs in Ge – Defect annealing 2600 nm deep

 Very efficient process – Technology applications

 Transferable to other systems
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Germanium

 Niche applications: Opto-electronics

 Purdue – Ultra pure Ge

Low impurities

 Ohmic contact – easy (Au-Sb)

 Au SBD’s

• Resistive evaporation – No defects introduced

• good current – voltage characteristics



Electrical Characterization of Defects

stage 2 when n ~0 

emission of electrons
e  = A exp (-E /kT)n a

deep states
(ideal point defects)

stage 1 when n >> 0

capture of electrons

c  = n Vn n th

 Classic DLTS measurements use majority carrier capture and 

emission process to obtain a “fingerprint” of the defect.

 By monitoring the change of emission rate with temperature an 

activation energy is obtained.

 By observing the capture rate a cross section can be obtained.
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 Monitor transient as 

function of temperature,T

 Plot S = C(t1) – C(t2) vs T

DLTS peak

 More than one level

DLTS spectrum

 At the maximum of a peak:

The DLTS Spectrum1
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Typical rates: 0.1 - 1000 /s

1 D. V. Lang, JAP 45, 2023 (1974) or Schroder, ”Semiconductor  Material and Device Characterization” 



Deep Level Transient Spectroscopy
 DLTS requires a depletion (space 

charge) region
• p-n, metal-semiconductor, MOS, …..

 Apply zero / forward bias – reverse 

bias pulse sequence
• Monitor C-t, I-t, … as function of T.

• Transient behaviour indicates the 

Presence of defects with levels 

in the band gap

 Analysis of transient yields:
• Distiction between majority and 

minority carrier defects

• Activation enthalpy (level 

position), ET

• Capture cross section, 

• Defect concentration, NT(x)

• Electric field: defect type (donor, 

acceptor, …)

• Uniaxial stress: defect orientation and 

symmetry
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L-DLTS of (H0.26+H0.30 ) peak

 The (H0.26+H0.30) DLTS peak 
is asymmetric

• It consists of more than one 
superimposed peaks

 L-DLTS revealed that these 
peaks belong to

• H0.30 – (-/0) state of V-Sb

• H0.26 – unknown structure

 This is similar to what has 
been reported for electron & 
gamma irradiation of Ge1. Emission rate (/s)

100 1000 10000

L
-D

L
T

S
 s

ig
n
a
l

0.0

0.2

0.4

0.6

0.8

H0.30

H0.26

T = 150 K
 

Vr = -1.0 V

Vp = +3.0 V

1 V. P. Markevich et al, J. Appl. Phys. 95, 4078 (2004). 
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 Resistive deposition does 

not introduce defects

• Curve (a)

 Sputter deposition intro-

duced five electron traps1

• Curve (b)

 EBD deposition intro-

duced five electron traps

• Curve (c)

DLTS: different metallization methods
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 All the SD induced defects are also 

introduced by MeV electron irradiation
• Curve (d)

1 F. D. Auret et al, J. Electron. Mat.  36, 1604 (2007).



DLTS: Example, two RW:  Defect E center
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Number of traps for n-type semiconductor:
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The number of traps Nt  can be 

determined 

ND :concentration of 

donors 

The depletion layer with W

increases with the bias potential:

The profile Nt(x) can be obtained



Annealing at room temperature

12

Annealing rate constant  k(T)

can be determined

Isochronal annealing: same 

time, different temperatures

Annealing activation energy 

E0 can be determined

t
t k(T)N

dt

dN
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Sample Preparation
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 Chemical cleaning, ie degreasing

 Chemical etch – oxide removal

 RF Sputter etch – Ar ICP

 Use COPRA plasma source

• Inductively coupled plasma 
(ICP)

• Low energy Ar ions:  1 - 120 eV

• Fluence rate: 1015 cm-2 s-1

• Etch rates: 0.1 nm s-1 for Ge

• Area: several tens of square 
cm
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Caution

 4 eV Ar ICP: Average at sample

 3.7 eV transfer to Ge atom

 Sample temperature increases

3 x 10 minute ICP (40°C)

 Annealing also in time and at increased temperature

 Sample temperature increases

3 x 10 minute ICP (40°C)

 Hydrogen passivation of defects



Our basic experiment: 4 eV Ar-ICP plasma 

annealing

15

1.-Sb doped Ge is damaged 

with 5 MeV alpha particles

Rest – 24 hours

2.-Au diode is evaporated in 

half the sample (half A)

3.- DLTS on A (black)

4.-ICP on A and B: 3 x 10 min

5.- Au RE - diode B

6.- DLTS on A (red-dashed)

7.- DLTS on B (blue)
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Observations

 4 eV ICP: E-center concentration -30%

 Effect depth in Ge: exceeds 2600 nm

 ICP through metal – less annealing

 Annealing diminished with higher sample temperature.

1 x 30 minute ICP (70°C)

8 eV Ar ICP (T ?)

 Compare to anneal with phonons:

• Low T (40 °C) ~ 150 °C

• High efficiency Lower efficiency
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Our hypothesis: Ar ions impacting on Ge produce 

Intrinsic Localised Modes that travel through Ge and 

anneal defects. Why?

1.-ILMs with MD in metals by Hyzhnyakov group have 0.5-5 eV

2.-The maximum energy transfer from Ar to Ge is 3.6 eV

3.- The activation energy for annealing an E center is about 1.36 eV

4.- Energy  remains  localized exceeding 4000 lattice units

5.- Increasing the energy of the plasma does not enhance the effect, this 

is because ILMs typically have a definite range or energies.

6. Increasing sample temperature – effect diminished.

7.- At least stationary ILMs have been obtained for Si and Ge with MD.
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Conclusions:

Plasma of 4eV produces annealing of defects very deep in 

Ge.

The energy delivered to E-center is ~1 eV.

1.  4 eV Ar hit produces an ILM in Ge with very high efficiency .

2.  ILM of energy ~3eV travel distances of the order of  

104 lattice units or more.

3.  The annealing efficiency of ILM with respect to phonons is 

extremely large.

Likely conclusions:
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Our basic experiment: Facts

20

1.-Sb concentration:  1.3·1015  cm-3  (ni= 2.4·1013  cm-3)  ;  1 Sb per 108 Ge

2.- Metal  (Au) thickness:  25nm

3.- After ICP on Ge the E center concentration drops 29% from NT= 

1.07·1014  cm-3

4.- If ICP is done on Au, the E center reduction is smaller, but exists.

5.- ICP is done for 30’ in intervals to prevent heating

6.- Defect annealing occurs up to  2600 nm or 4600 lattice units

7.- If the plasma energy is increased the effect is smaller 

8.- Thermal annealing has to be done at 150°C to obtain a similar effect.
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Some numbers

1.-Ion current can be measured,  

2.- DB creation efficiency:

3.-Number of breathers:        
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Interaction cross-section and energy delivered 

by a breather
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Electron beam deposition

 Advantages:

• Easily evaporates high 

melting point metals.

• Highly controllable 

deposition rates.

• Good adhesion.

 Disadvantage:

• Introduces defects at and 

below the surface of 

semiconductors.

• Chen et al 

• Mooney et al



E vs AMU for e or H

 11.5 eV to create 

Frenkel pair

 1st: electron-atom

 2nd atom to crystal

 Example: e to H to 

Ge
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The Defect Concentration

 Defect concentration from peak height, C/C:1
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Depth Distribution of EBD defects

 Use fixed bias, variable pulse 

DLTS method

• With “ ” correction1.

 Not possible to profile the hole 

traps:

• Hole concentration is not known.

 V-Sb (E0.38):

• Concentration decreases rapidly 

away from the surface.

• Approaches 1014 cm-3 at surface.

• Diffusion of vacancies from the 

surface?

1 Y. Zohta et al. J. Appl. Phys. 53, 1809 (1981)
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E-beam deposition - Pt

10 keV electrons

Beam path

Reflected electrons

Particles

Experiment 1
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E-beam shielding e-traps

High vacuum-2 shields

F/gas – 2 shields

F/gas – 1 shield

F/gas – no shields

“Standard EBD”
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E-beam shielding h-traps

High vacuum-2 shields

F/gas – 2 shields

F/gas – 1 shield

F/gas – no shields

“Standard EBD”
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Energy levels

 E0.37 – no surprise!

 E.311 new

 E0.28 new

 E0.13

 E0.10

 Use L-DLTS

 Conclusions 1
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Experiment 2 - EBE

Deposition vs exposure

No similarities
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Arrhenius plots – L-DLTS

No hole traps

in common

New defects –

impurity related?
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Experiment 2

Au & e-traps

Defect concentration

E-traps dominant
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Arrhenius plots – L-DLTS

E0.38

Common to both

New defects – perhaps

not impurity related
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Summary and Conclusions

 1. Shielding lowers the defects introduced by EBD.

Damage caused by impacts with ions / particles – not e.

 2. Damage caused in 1st 0.5 µm, at / near defect site.

How was the energy transferred?

 3. Damage caused by E < 1.3 eV transfer to Ge.

Only enough to displace H or light atoms – single bond.

 Will DLTS be more useful in future?
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MeV electrons
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Electron beam deposition

H0.15 

Fig. 7 (of 7 ), S. M. M. Coelho et al
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E vs AMU for e or H

 11.5 eV to 

create 

Frenkel pair 
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Atomic mass (AMU)
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I-V: Pt diodes

Voltage (V)
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Defects in Semiconductors

 Defects can be “good” or “bad”

• Solar cells: “bad”: eliminate them!!!

• Fast switches: “good”: deliberately introduce them!

 Defects are introduced during

• Crystal growth, sawing / cutting and polishing

• Critical processing steps
» Surface cleaning by particle processing (sputter etching)

» Metallization

• Radiation
» Space, reactors

» Accelerators / implanters

 Important defect parameters

• Energy level, ET, in bandgap 

• Capture cross section, 

• Concentration, NT
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