Creation and annealing of point defects in germanium crystal lattices by subthreshold

energy events

ergio M. M. Coelho¹, Juan F. R. Archilla² and F. Danie Auret ¹Physics Department, University of Pretoria, South Africa ² Group of Nonlinear Physics, University of Sevilla, Spain

University of Sevilla 2013

Our team in Pretoria

Juan FR Archilla (Project leader) Group of Nonlinear Physics Lineal (GFNL) University of Sevilla, Spain With Sergio Coelho, F Danie Auret Department of Physics University of Pretoria, South Africa Vladimir Dubinko Kharkov Physical-Technical Institute, Kharkov, Ukraine Vladimir Hizhnyakov Institute of Physics, University of Tartu Tartu, Estonia

sergio@up.ac.za

Outline

- Why study this? Low energy? Really?
- Germanium ultrapure material
- Hydrogen in germanium
- DLTS Deep Level Transient Spectroscopy
- An experiment: ICP annealing of E-center

Summary and conclusions

Why low energy?

Why study this? Low energy? Really?

- Impacts generate Moving Intrinsic Localized Modes (ILMs) or Discrete Breathers (DBs) in Ge
- ILMs in Ge Defect annealing 2600 nm deep
- Very efficient process Technology applications
- Transferable to other systems

Germanium

Niche applications: Opto-electronics

Purdue – Ultra pure Ge

Low impurities

Ohmic contact – easy (Au-Sb)

Au SBD's

- Resistive evaporation No defects introduced
- good current voltage characteristics

Electrical Characterization of Defects

- Classic DLTS measurements use majority carrier capture and emission process to obtain a "fingerprint" of the defect.
- By monitoring the change of emission rate with temperature an activation energy is obtained.
- By observing the capture rate a cross section can be obtained.

The DLTS Spectrum¹

EMPERATURE

Typical rates: 0.1 - 1000 /s

¹ D. V. Lang, JAP 45, 2023 (1974) or Schroder, "Semiconductor Material and Device Characterization"

Deep Level Transient Spectroscopy

- DLTS requires a depletion (space charge) region
 - p-n, metal-semiconductor, MOS,
- Apply zero / forward bias reverse bias pulse sequence
 - Monitor C-t, I-t, ... as function of T.
 - Transient behaviour indicates the
 Presence of defects with levels
 in the band gap
- Analysis of transient yields:
 - Distiction between majority and minority carrier defects
 - Activation enthalpy (level position), *E*_T
 - Capture cross section, σ
 - Defect concentration, N_T(x)
 - Electric field: defect type (donor, acceptor, ...)
 - Uniaxial stress: defect orientation and symmetry

sergio@up.ac.za

L-DLTS of $(H_{0.26} + H_{0.30})$ peak

¹ V. P. Markevich et al, J. Appl. Phys. 95, 4078 (2004).

DLTS: different metallization methods

- Resistive deposition does not introduce defects
 - Curve (a)
- Sputter deposition introduced five electron traps¹
 - Curve (b)
- EBD deposition introduced five electron traps
 - Curve (c)

All the SD induced defects are also introduced by MeV electron irradiation

Curve (d)

¹ F. D. Auret *et al*, J. Electron. Mat. **36**, 1604 (2007).

sergio @up.ac.za

DLTS: Example, two RW: Defect E center

$$RW_1 = 80s^{-1} = e_n(T_1) =$$
$$\sigma_n \gamma_n T_1^2 \exp(-\frac{E_T}{kT_1})$$

$$RW_2 = 200s^{-1} = e_n(T_2) =$$
$$\sigma_n \gamma_n T_2^2 \exp(-\frac{E_T}{kT_2})$$

 σ_n and E_T can be determined

Number of traps for n-type semiconductor:

 N_D :concentration of donors

$$\frac{\Delta C}{C_0} = \frac{N_t}{2N_D}$$

The number of traps N_t can be determined

The depletion layer with W increases with the bias potential:

The profile $N_t(\mathbf{x})$ can be obtained

Annealing at room temperature

$$\frac{dN_t}{dt} = -k(T)N_t$$

$$k(T) \ \alpha \exp(-\frac{E_0}{k_B T})$$

Annealing rate constant k(T) can be determined

Isochronal annealing: same time, different temperatures

Annealing activation energy E_0 can be determined

Sample Preparation

Chemical cleaning, ie degreasing
 Chemical etch – oxide removal
 RF Sputter etch – Ar ICP

Use COPRA plasma source

- Inductively coupled plasma (ICP)
- Low energy Ar ions: 1 120 eV
- Fluence rate: $\pm 10^{15}$ cm⁻² s⁻¹
- Etch rates: \pm 0.1 nm s⁻¹ for Ge
- Area: several tens of square cm

4 eV Ar ICP: Average at sample 3.7 eV transfer to Ge atom Sample temperature increases 3 x 10 minute ICP (40°C) Annealing also in time and at increased temperature Sample temperature increases 3 x 10 minute ICP (40°C) Hydrogen passivation of defects

Our basic experiment: 4 eV Ar-ICP plasma

1.-Sb doped Ge is damaged with 5 MeV alpha particles Rest - 24 hours 2.-Au diode is evaporated in half the sample (half A) 3.- DLTS on A (black) 4.-ICP on A and B: 3 x 10 min 5.- Au RE - diode B 6.- DLTS on A (red-dashed) 7.- DLTS on B (blue)

4 eV ICP: E-center concentration -30% Effect depth in Ge: exceeds 2600 nm ICP through metal – less annealing Annealing diminished with higher sample temperature. 1 x 30 minute ICP (70°C) 8 eV Ar ICP (T?) Compare to anneal with phonons: ~ 150 °C Low T (40 °C)

High efficiency

~ 150 °C Lower efficiency Our hypothesis: Ar ions impacting on Ge produce Intrinsic Localised Modes that travel through Ge and anneal defects. Why?

- 1.-ILMs with MD in metals by Hyzhnyakov group have 0.5-5 eV
- 2.-The maximum energy transfer from Ar to Ge is 3.6 eV
- 3.- The activation energy for annealing an E center is about 1.36 eV
- 4.- Energy remains localized exceeding 4000 lattice units
- 5.- Increasing the energy of the plasma does not enhance the effect, this is because ILMs typically have a definite range or energies.
- 6. Increasing sample temperature effect diminished.
- 7.- At least stationary ILMs have been obtained for Si and Ge with MD.

Conclusions:

Plasma of 4eV produces annealing of defects very deep in Ge.

The energy delivered to E-center is ~1 eV.

Likely conclusions:

1. 4 eV Ar hit produces an ILM in Ge with very high efficiency .

 ILM of energy ~3eV travel distances of the order of 10⁴ lattice units or more.

3. The annealing efficiency of ILM with respect to phonons is extremely large.

Acknowledgements

J. F. R. Archilla – many suggestions & hospitality
 South African NRF – Financial assistance
 Group members for listening & helpful comments.

Our basic experiment: Facts

1.-Sb concentration: $1.3 \cdot 10^{15}$ cm⁻³ (n_i= 2.4 \cdot 10^{13} cm⁻³) ; 1 Sb per 10⁸ Ge

- 2.- Metal (Au) thickness: 25nm
- 3.- After ICP on Ge the E center concentration drops 29% from N_T = 1.07.10¹⁴ cm⁻³
- 4.- If ICP is done on Au, the E center reduction is smaller, but exists.
- 5.- ICP is done for 30' in intervals to prevent heating
- 6.- Defect annealing occurs up to 2600 nm or 4600 lattice units
- 7.- If the plasma energy is increased the effect is smaller
- 8.- Thermal annealing has to be done at 150°C to obtain a similar effect.

Some numbers

 $\Phi_{Ar} = 1.25 \cdot 10^{13} \text{ cm}^{-2} \text{s}^{-1} \approx 0.04 a^{-2} s^{-1}$ 1.-Ion current can be measured, $\gamma: \quad \Phi_{DB} = \gamma \cdot \Phi_{Ar} \quad ; \quad \gamma < 1$ 2.- DB creation efficiency: $n_{DB} = \frac{\Phi_{DB}}{c_s} \approx \gamma 2.3 \cdot 10^7 \,\mathrm{cm}^{-3}$ 3.-Number of breathers: 4. – Phonons: $E_{ph} = 0.035 \text{eV}$ $n_{ph} = \frac{3n_{Ge}}{\exp(E_{ph}/k_BT) - 1} \approx 4.6 \cdot 10^{22} \text{ cm}^{-3}$ For $\gamma = 1$ $-\frac{1}{N_T} \frac{dN_{T,DB}}{dt} \approx 2 \cdot 10^{-4} s^{-1}$ $-\frac{1}{N_T} \frac{dN_{T,RT}}{dt} \approx 2 \cdot 10^{-11} s^{-1}$

Relative annealing efficiency per DB or phonon: ~10²²

Relative annealing efficiency per eV of DB or phonons: ~10²⁰

Interaction cross-section and energy delivered by a breather

Interaction cross-section σ

$$-\frac{dN_T}{dt} = \sigma N_T \Phi_{DB} \exp(-\frac{E_0 - \Delta}{k_B T})$$

Interaction cross-section

$$\sigma = \alpha \sigma_0$$
 ; $\alpha > 1$

Minimal interacion cross-section

 $\sigma_0 = n_{Ge}^{-2/3} \approx 10^{-15} \text{ cm}^2$

Apparent diminution of the activation energy because of DB interaction: Δ

$$-\frac{dN_T}{dt} = \alpha \gamma \sigma_0 N_T \Phi_{ions} \exp(-\frac{E_0 - \Delta}{k_B T}) \qquad \alpha, \gamma, \Delta \quad \text{unknown}$$
$$-\frac{dN_T}{dt} = \sigma_{ions} N_T \Phi_{ions} \qquad \sigma_{ions} \approx \frac{1}{50} \sigma_0 \approx 1.5 \cdot 10^{-17} \text{ cm}^2$$

For $\alpha \gamma = 1$, $\Delta \approx 1.2 \text{eV}$

References

- J. F. R. Archilla, S. M. M. Coelho, F. D. Auret, V. I. Dubinko, and V. Hizhnyakov, Experimental observation of moving discrete breathers in Germanium. To be published.
- [2] F. D. Auret, S. Coelho, G. Myburg, P. J. Janse van Rensburg and W. E. Meyer, Defect introduction in Ge during inductively coupled plasma etching and Schottky barrier diode fabrication processes *Thin. Solid. Films.* 518:2485, 2010.
- [3] S. Flach and A. Gorbach, Discrete Breathers: Advances in Theory and Applications Phys. Rep. 467:1-116, 2008.
- [4] M. Hass, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers, Prediction of high-frequency intrinsic localised modes in Ni and Nb, Phys. Rev. B 84:144303, 2011.
- [5] V. Hizhnyakov, M Haas, A Shelkan and M Klopov, 2013, Theory and MD simulations of intrinsic localized modes and defect formation in solids *Phys. Script.* To appear.
- [6] V. I. Dubinko, P. A. Selyshchev, and J. F. R. Archilla, Reaction rate theory with account of the crystal anharmonicity, Phys. Rev. E 83:041124, 2011.

Electron beam deposition

Advantages:

- Easily evaporates high melting point metals.
- Highly controllable deposition rates.
- Good adhesion.

Disadvantage:

- Introduces defects at and below the surface of semiconductors.
- Chen et al
- Mooney et al

sergio @up.ac.za

E vs AMU for e or H

 11.5 eV to create Frenkel pair
 1st: electron-atom
 2nd atom to crystal
 Example: e to H to Ge

The Defect Concentration

Defect concentration from peak height, ∆C/C:¹

$\square N_T$ as low as 10¹⁰ defects /cm³

¹ Y. Zohta et al, JAP. 53, 1809 (1982)

sergio@up.ac.za

Depth Distribution of EBD defects

- Use fixed bias, variable pulse DLTS method
 - With " λ " correction¹.
- Not possible to profile the hole traps:
 - Hole concentration is not known.
- V-Sb (E_{0.38}):
 - Concentration decreases rapidly away from the surface.
 - Approaches 10¹⁴ cm⁻³ at surface.
 - Diffusion of vacancies from the surface?

E-beam deposition - Pt

10 keV electrons Beam path Reflected electrons Particles

Experiment 1

E-beam shielding e-traps

High vacuum-2 shields F/gas – 2 shields F/gas – 1 shield F/gas – no shields "Standard EBD"

E-beam shielding h-traps

High vacuum-2 shields F/gas – 2 shields F/gas – 1 shield F/gas – no shields "Standard EBD"

Conclusions 1

Experiment 2 - EBE Deposition vs exposure

No similarities

Arrhenius plots – L-DLTS

New defects – impurity related?

Experiment 2 Au & e-traps

Arrhenius plots – L-DLTS

E_{0.38} Common to both

New defects – perhaps not impurity related

Summary and Conclusions

 1. Shielding lowers the defects introduced by EBD. Damage caused by impacts with ions / particles – not e.
 2. Damage caused in 1st 0.5 µm, at / near defect site. How was the energy transferred?
 3. Damage caused by E < 1.3 eV transfer to Ge. Only enough to displace H or light atoms – single bond.

Will DLTS be more useful in future?

Acknowledgements

J. F. R. Archilla – many suggestions & hospitality
 South African NRF – Financial assistance
 Group members for listening & helpful comments.

MeV electrons

sergio@up.ac.za Sevilla, 2013 Slide 2

Electron beam deposition

E vs AMU for e or H

I-V: Pt diodes

Ideality = 1.02

Previous lowest: 1.05

Current – lowest measured

Defects linked to e-beam

Next experiment

Defects in Semiconductors

Defects can be "good" or "bad"

- Solar cells: "bad": eliminate them!!!
- Fast switches: "good": deliberately introduce them!

Defects are introduced during

- Crystal growth, sawing / cutting and polishing
- Critical processing steps
 - » Surface cleaning by particle processing (sputter etching)
 - » Metallization
- Radiation
 - » Space, reactors
 - » Accelerators / implanters

Important defect parameters

- Energy level, *E*_T, in bandgap
- Capture cross section, σ
- Concentration, N_T

