Plegamiento de Proteínas. El Modelo de Davydov/Scott Protein Folding and the Davydov/Scott model

Leonor Cruzeiro

CCMAR and FCT,

University of Algarve

The Primary Structure of Proteins

Amino acid side chains

The three-dimensional structure of Proteins

 α

Unstructured

A Funnel energy landscape?

Protein Folding

E

Conformational Change

The Structure of Proteins

The Classical Potential Energy of Proteins

$$V = \sum_{bonds} K_r (r - r_{eq})^2 + \sum_{angles} K_\theta (\theta - \theta_{eq})^2 +$$

$$+ \sum_{dihedrals} \frac{E_n}{2} \left[1 + \cos \left(n \varphi - \gamma \right) \right] + \sum_{i < j} \left(\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}} + \frac{q_i q_j}{\varepsilon R_{ij}} \right)$$

A Multi-funnel energy landscape

Conclusion: classical potentials cannot explain the selection of the native funnel. Other, transient, forces must exist to effect that selection.

Universidade

The VES Hypothesis

The first step in protein folding and function is the storage of energy in the form of Vibrational Excited States.

The Davydov/Scott model

