

## <u>STM – Scanning Tunneling Microscopy</u> <u>Microscopia de efecto túnel</u>

#### Taisia Gorkhover y Daniela Rupp



Sevilla, con el Grupo de Física No Lineal, 22 de enero de 2007

## **Estructura**

- Historia de la microscopía electrónica
- Principios básicos y magnitudes
- Teoría de STM
- Construcción y preparaciones del experimento
- Grabación y análisis de imágenes con STM
- STM posibilidades y fronteras
- SEM principios y comparación con STM

## Historia de la microscopía electrónica

- 1931 primer microscopio electrónico de Ruska
- 1933 emisión efecto fotoeléctrico
- 1935 emisión termoiónica
- 1936 emisión de campo
- 1972 emisión de campo con escáner



1982 STM de Binnig/Rohrer, premio Nobel en 1986

# Pricipios básicos y magnitudes

- Ia corriente túnel depende de d y U<sub>bias</sub>
- distancia d entre
  punta y superficie
  ≈ 5nm
- tensión aplicada
  U<sub>bias</sub> ≈ 1V



# **Teoría de STM**



# Efecto túnel



La corriente túnel depende exponencialmente de la distancia d alta resolución



Wagner, Dähne: Seminarskript STM, S. 2

# Visión esquemática

- distancia grande: mismo nivel de vacío; Φ<sub>i</sub> trabajo de extracción
- distancia pequeña: equilibrio térmico, mismo E<sub>F</sub> (energía de Fermi)





con tensión: E<sub>F</sub> empujado por U\*e



# Teoría del efecto túnel de Baardeen

interacción punta prueba pequeña => teoría de perturbaciones de primer orden con la punta como perturbación

$$I_{T} = \frac{4\pi e}{\hbar} \int_{0}^{e_{U}} \rho_{m} \left( E_{Fermi}^{m} + \varepsilon \right) \cdot \rho_{p} \left( E_{Fermi}^{p} + \varepsilon \right) \cdot \left| M \right|^{2} d\varepsilon$$

 corriente túnel I<sub>T</sub> : ρ's son densidades de estados, aproximación de bajas temperaturas

# Aproximación de Tersoff y Hamann



- La densidad de estados en la punta  $\rho_{p}$  es constante.
- Sólo el átomo "más externo" de la punta interviene en el proceso túnel.
- La función de onda de ese átomo proporciona un orbital tipo s.

# Aproximación de Tersoff y Hamann

#### Ecuación de la corriente túnel:

$$I_T \propto \rho_p \cdot \int_{0}^{eU} \rho_{m,local} \left(\overline{R}, E_{Fermi}^p + \varepsilon\right) \cdot d\varepsilon$$

 $\rho_p$ : densidad de estados en la punta

 $\rho_{\text{m,local}} \text{: densidad de estados local de la muestra} \\ \text{con energía } E_{\text{F}} + \epsilon \text{ en la coordenada } \textbf{R} \text{ del} \\ \text{átomo externo de la punta}$ 

# Dependencias de la corriente túnel

$$I_{T} = C \cdot U_{bias} \cdot \rho_{p} \left( E_{Fermi}^{p} \right) \cdot \rho_{m} \left( \overline{r}, E_{Fermi}^{m} \right)$$

I<sub>T</sub> ~ U<sub>bias</sub> : para U pequeño, ρ independiente de U
 I<sub>T</sub> ~ e<sup>-κd</sup> : viene de ρ<sub>m</sub> (densidad de estado local)
 I<sub>T</sub> ~ ρ<sub>m</sub>(r,E<sub>Fermi</sub>) : importante para interpretación de las imágenes

# 

# Dependencias de la corriente túnel

$$I_{T} = C \cdot U_{bias} \cdot \rho_{p} \left( E_{Fermi}^{p} \right) \cdot \rho_{m} \left( \vec{r}, E_{Fermi}^{m} \right)$$

#### Corriente constante significa densidades de estados locales constantes (cerca de E<sub>F</sub>) en la superficie de la muestra

# Visualización de las dependencias

 la información topográfica es limitada

(los escalones son topográficos,los huecos de impurezas no)



 el STM reconstruye las densidades de estados de la muestra y de la punta



# **Scanning-Tunneling-Spectroscopy**



#### coordenada fija (x,y,z)

U<sub>bias</sub> variando
 => la función
 característica I(U)





 información sobre la estuctura de bandas de los semiconductores



## Modo de corriente constante



Ventaja: óptima para estucturas rugosas por regulacion de altura

**Desventaja**: barrido lento, errores a causa del piezoeléctrico que se "retarda"

## Modo de altura constante





Ventaja : barrido rápido

Desventaja : sólo para superficies muy lisas(<<5nm)

# Construcción y preparación del experimento



# Scanner



Modo cc: el ordenador arregla los piezoeléctricos de x e y

ajusta U<sub>bias</sub> y I<sub>túnel</sub> requerido
 lee la corriente de túnel I<sub>T</sub>
 lo reacopla al piezoeléctrico de z



#### Proceso de aproximación

#### Problema:

- para cambiar la muestra es necesario una distancia macroscopica (~cm)
- contacto de túnel solo a distancia mucho más pequeña (~ 0,5-5nm)
- $\Rightarrow$  al principio, acercamiento hasta < 0,1mm
- ⇒ después "walker" con longitud de paso < 5nm pero puede pasar distancia ~ 0,1mm



### Amortiguación de las vibraciones

#### Problema:

- d < 5nm => Vibraciones pequeñas pueden romper la punta
- I ~ e<sup>-2kd</sup> => hasta elongaciones mínimas falsean el resultado



=> la construcción entera, sobre una plataforma, está colgando de muelles

=> imanes dentro de unas placas de aluminio amortiguan con el principio de frenado por corriente inducida

#### Preparación de la punta





#### La punta monoatomica es condición necesaria para la STM!



# Grabación y análisis de imágenes con STM



### **Dificultades durante la medida**



- Suciedad sobre la superficie
- Intercambio de materia entre superficie y punta
- Vibraciones del piezoeléctrico por una ganancia errónea
- Movimiento térmico

# Para medidas y resultados con sentido se tiene que saber reconocer las fuentes de error!

#### Perfil de altura



#### Perfil de altura



 perfil de altura muestra el grosor de la capa de casi 0,3 nm
 La constante de celda unidad g<sub>GaAs</sub> = 0,6nm => 1/2 de celda unidad (distancia entre los átomos de Ga y As)

## Evaluación de STS => Energía de la banda prohibida

Se sabe que la muestra (GaAsN) contiene 3% N  $E_{g,GaAs} = 1,4eV$  $E_{q,GaN} = 3,5eV$ **Obtenemos** para  $E_{g,GaAsN} = 1,5eV$ Tiene sentido, es cerca de E<sub>g,GaAs</sub> !



# STM posibilidades y fronteras

### Sistema muestra-punta

 $\Leftrightarrow$ 

#### <u>IDEAL</u>

- sólo las cualidades de la muestra
- resolución atomica
- reproducible



- I<sub>T</sub> depende de p<sub>EFermi</sub> de la punta
- perdida de resolución por escalones
  - puntas multiples
  - intercambio de material
  - movimiento térmico

## SEM-Scanning Electron Microscopy-Microscopía electrónica de barrido





# **SEM-Principios y magnitudes**

- Focalización fina del rayo
  de electrones en líneas
  sobre la muestra
- Construcción de la imagen por productos de la interacción de electrones primarios energéticos (E=30eV) y los átomos superficiales de la muestra



# **Radiación 🖘 Información**

- Topografía de la muestra
- Distribución de los potenciales eléctrico y magnético
- Análisis de los elementos
- Orientación cristalográfica
- Distribución del dopado



## **SEM-Medida**

 Construcción típica, muestra en vacío ⇒

 Lectura y escritura sincronizadas

 intensidad del rayo de escritura modulada por la señal de medida



## Imágenes de SEM

- Topografía superficial
  visible mediante distintos
  efectos de contraste, ej.
  contraste por rugosidad
- Igual para propiedades del material, ej. contraste del material
- Mezcla de ambos procesos



Mica muscovita y disilicato de lutecio tras una transformación reconstructiva

J.Phys. Chem. B 2006,110,24112-24120,Archilla et

#### SEM 🗇 STM

Común: solo para superfícies conductoras

#### Ventajas

#### Desventajas

- Interpretendenties er la servición a la servición a la servición de la ser
- muestras biológicas
- análisis químico
- orientación cristalográfica

- no tiene resolución atomica
- es necesario el vacío
- destrucción de la muestra
- no hay información 3-D
- errores de aberración