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I. INTRODUCTION

Solitons are localized nonlinear waves that behave like particles in many situations,
with their own mass, velocity and other particle-like properties [1]. By using a
collective coordinate theory, it is shown that the soliton dynamics can be reduced

to the study of a system of ordinary differential equations for collective variables,
such as the kink center of mass, its width, etc. This scheme captures and explains

the main features of different phenomena, such as soliton scattering and soliton
diffusion [2].

An interesting phenomenon which appears in particle as well as in extended sys-
tems is the so-called ratchet effect, where particles or solitons manifest a unidirec-
tional motion, generally due to the action of periodic forces of zero mean. In fact, in

a similar way to that of the rectification of random motion of Brownian particles in
periodic potentials [3], unidirectional motion of solitons is induced by breaking the

spatiotemporal and/or field symmetries of the extended system [4, 5]. Furthermore,
characteristic features of the ratchet phenomena in point-particle systems also arise

in the case of solitons. For instance, current reversals and resonance behaviors of
the soliton average velocity are achieved through parameter variations of potentials,

forces, and damping [4, 6–8].
The relevance of these phenomena covers a wide range of areas from biophysics [9]

to possible technological applications [10]. Specifically, soliton ratchets have been

observed experimentally in the damped Josephson junctions driven by external
asymmetric forces [11, 12]. In these experiments, a long quasi-one-dimensional

Josephson junction is described by the perturbed sine-Gordon equation

Φtt(x, t)− Φxx(x, t) + U ′ [Φ(x, t)] = −βΦt(x, t) + f(x, t), (1)

for the superconducting phase difference Φ(x, t) across the junction, where Φx ≡

∂Φ/∂x, Φt ≡ ∂Φ/∂t, β > 0 is the damping coefficient, U ′(z) is the derivative with
respect to z of a cosine potential U(z), and f(x, t) is an external force. In this

system, the ratchet effect of kink (or antikink) excitations is induced: i) by using
a symmetric field potential, U(Φ) = 1− cos(Φ), together with an external periodic
force that breaks either temporal symmetries [4, 7, 11, 13] or spatial symmetries [14];

ii) by using an asymmetric sawtooth potential of the type U(Φ) = C − cos(Φ) +
(λ/2) sin(2Φ), where C and λ are constants, plus an external ac force f(t) [6, 8,

14, 15]; iii) by considering local and periodic arrays of inhomogeneities U(Φ, x) =
1 − cos(Φ)[1 + ǫ

∑
i,n δ(x − xi − nL)] (microshorts along the Josephson junctions),

together with the action of an ac force f(t) [16, 17]; and finally, iv) by modulating
the field potential with an ac force, U(Φ, t) = 1 − cos(Φ)[1 + ǫ1 sin(ω1t)], together



3

with an additive ac signal f(t) = ǫ2 sin(ω2t) [18].
It is interesting to note that in all the cases mentioned above, the ratchet mecha-

nism is due to a combination of a periodic potential with space- or time-dependent

external forces. However, for an ensemble of Brownian particles, a directed cur-
rent has also been obtained solely by using a symmetric periodic potential that

alternates between two states that differ only by a discrete translation [19]. It is
therefore natural to pose the following question: can a directed motion of kinks be

obtained in the absence of any external force while keeping the field potential sym-

metry at every time instant? The aim of this paper is to answer this question by

extending this ratchet mechanism to the sine-Gordon kink. The key idea is to shift
the sine-Gordon potential forwards and backwards by introducing a time-dependent
additional phase. In contrast to the Brownian particle case, net motion of kink is

achieved in the absence of noise. Here a novel mechanism of soliton ratchets ap-
pears, where, unlike other models, the background field plays a decisive role in the

generation of net motion.
The outline of the paper is as follows. A full description of the model under

consideration is presented in Sec. II. Necessary conditions for the occurrence of
net motion are established by using a symmetry analysis. In Sec. III, a collective

coordinate approach is developed in order to provide a physical insight into the
ratchet mechanism. In Sec. IV, the theoretical results of the previous sections are
then compared with numerical simulations. Biharmonic and dichotomic periodic

signals are used to shift the sine-Gordon potential in time and the dependence of
the ratchet velocity on the system parameters is investigated. Finally, the main

contributions of our work are summarized in the last section.

II. DESCRIPTION OF THE MODEL AND SYMMETRY ANALYSIS

In this study, our attention is focused on a sine-Gordon system of the form

Φtt(x, t)− Φxx(x, t) + βΦt(x, t) + U ′ [Φ(x, t), t] = 0 (2)

with a time-dependent potential:

U(Φ, t) = 1− cos [Φ + θη(t)] , (3)

where η(t) is a periodic function of period T and zero time-average (such that
∫ T
0 dt η(t)/T = 0), and θ is a parameter introduced to adjust the amplitude of η(t).
For a fixed value of θη(t) = κ, the potential considered above corresponds to that

used to model what is called in the literature a κ-junction [20], that is, a Josephson
junction with an additional phase shift κ. Our model is inspired by experimental
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observations of transitions from positive (“0-phase state”) to negative (“π-phase
state”) coupling between the superconductors of a junction with a graphene inter-
layer, which can easily be controlled by a gate voltage [21]. Similar transitions,

induced for instance by temperature variations, have also been observed with a
ferromagnetic interlayer [22]. The potential (3) can be considered a theoretical

generalization of such observations.

To fully specify the mathematical problem, the partial differential equation (2)-(3)
must be amended by both initial and boundary conditions. Since we are interested
in studying solutions of Eqs. (2)-(3) with only one kink-like structure present and,

consequently, with topological charge 2π, we consider aperiodic boundary conditions
of the form [23]

lim
x→+∞

Φ(x, t) = lim
x→−∞

Φ(x, t) + 2π (4)

lim
x→+∞

Φx(x, t) = lim
x→−∞

Φx(x, t) . (5)

Additionally, the following initial conditions at time t0 are assumed

Φ(x, t0) = 4 arctan (ex) (6)

Φt(x, t0) = 0 , (7)

which correspond to an unperturbed kink centered at x = 0 and at rest.

The center of mass of the kink and its time-average velocity can be respectively
calculated from the expressions

X(t) =
1

2π

∫ +∞

−∞
dx x Φx(x, t) (8)

and

V = lim
∆t→∞

1

∆t

∫ t0+∆t

t0
dtXt(t) = lim

∆t→∞

X(t0 +∆t)

∆t
, (9)

where, according to Eq. (6), it has been used that X(t0) = 0.

Let us now examine the conditions under which a net motion of the kink may be

expected to occur. To this end, let Φ(x, t; θ, t0) be the solution of the problem defined
by Eqs. (2)-(7), where, for convenience, its dependence on the parameters θ and t0
has been explicitly indicated. It is then straightforward to verify that the function
2π − Φ(−x, t;−θ, t0) is also solution of the same problem. Consequently, from the

uniqueness of the solution of the problem (2)-(7), it follows that Φ(x, t; θ, t0) =
2π − Φ(−x, t;−θ, t0) and, taking into account Eqs. (8) and (9), that

V (θ, t0) = −V (−θ, t0) . (10)
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Now let us assume that the periodic function η(t) satisfies the following time-shift
symmetry

η(t) = −η(t+ T/2) . (11)

In this case, it is easy to show that the function Φ(x, t + T/2;−θ, t0 + T/2) is

solution of the problem (2)-(7).Thus, from the uniqueness of the solution, it follows
that Φ(x, t; θ, t0) = Φ(x, t + T/2;−θ, t0 + T/2) and, bearing in mind Eqs. (8) and

(9), that

V (θ, t0) = V (−θ, t0 + T/2) . (12)

It can be seen that the time-average velocity is independent of the initial time t0,
i.e., V (θ, t0) = V (θ). Consequently, in order to generate a net motion, the symmetry

(11) must be broken, since otherwise from Eqs. (10) and (12) it would follow that
V (θ) = 0.

III. COLLECTIVE COORDINATE APPROACH

Physical insight into the appearance of net kink transport can be gained by means

of a collective coordinate approach. To this end, let us define the “naked” kink field
as Ψ(x, t) = Φ(x, t) − ϕ(t), where ϕ(t) = limx→−∞Φ(x, t) is the background field.

This background field satisfies the differential equation

ϕtt(t) = −βϕt(t)− U ′[ϕ(t), t] = −βϕt(t)− sin [ϕ(t) + θη(t)] , (13)

with the initial conditions ϕ(t0) = ϕt(t0) = 0.
The momentum and the energy of the “naked” kink are respectively given by the

expressions

P (t) = −
∫ +∞

−∞
dxΨt(x, t)Ψx(x, t) (14)

and

E(t) =
∫ +∞

−∞
dx




[Ψt(x, t)]

2

2
+

[Ψx(x, t)]
2

2
+ Ũ [Ψ(x, t), t]



 , (15)

with Ũ [Ψ(x, t), t] being the new potential U [Ψ(x, t) + ϕ(t), t]− U [ϕ(t), t]. In order
to obtain a finite result for E(t), the zero of this new potential has been chosen so
that limx→±∞ Ũ [Ψ(x, t), t] = 0. By differentiating with respect to time Eqs. (14)

and (15), and using Eqs. (2), (3), and (13), it is easy to show that

Pt(t) = −βP (t)− 2π sin [ϕ(t) + θη(t)] (16)



6

and

Et(t) = [ϕt(t) + θηt(t)]
∫ +∞

−∞
dx {sin [Ψ(x, t) + ϕ(t) + θη(t)]− sin [ϕ(t) + θη(t)]}

+sin [ϕ(t) + θη(t)]
∫ +∞

−∞
dxΨt(x, t)− β

∫ +∞

−∞
dx [Ψt(x, t)]

2 . (17)

Let us now consider an ansatz for the “naked” kink field of the form

Ψ(a)(x, t) = 4 arctan



exp


x−X(t)

L(t)





 , (18)

where X(t) and L(t) are, respectively, the center of mass and the width of the

kink-like structure.
By inserting this ansatz into Eqs. (14) and (15), one obtains that

P (t) =
8Xt(t)

L(t)
(19)

where 8/L(t) plays the role of an effective mass, and

E(t) =
π2 [Lt(t)]

2 + 12
{
1 + [Xt(t)]

2 + [L(t)]2 cos [ϕ(t) + θη(t)]
}

3L(t)
. (20)

From Eqs. (13) and (16), it is easy to see that the function f(t) = P (t)− 2πϕt(t)

satisfies the differential equation ft(t) = −βf(t). In addition, from Eqs. (7) and
(14), it is clear that f(t0) = 0, and hence f(t) = 0 ∀t ≥ t0. Consequently, it is

obtained that P (t) = 2πϕt(t). Thus, according to Eq. (19), the kink velocity can
be expressed as

Xt(t) =
πL(t)ϕt(t)

4
. (21)

Remarkably, this expression shows that a net motion of the kink appears due to
the coupling between the background field and the width of the kink. In contrast

to other soliton ratchet mechanisms, where the background field is used only to
improve the collective coordinate theory [24], here ϕ(t) plays an essential role in the

ratchet effect.
A differential equation for the time evolution of L(t) can be obtained by replacing

Eqs. (18) and (20) in Eq. (17) and using Eq. (21). After lengthy calculations, one
finds

Ltt(t) =
[Lt(t)]

2

2L(t)
−

3L(t) [ϕt(t)]
2

8
− βLt(t)

+
6

π2L(t)

{
1− [L(t)]2 cos [ϕ(t) + θη(t)]

}
, (22)
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which has to be solved with the initial conditions L(t0) = 1 and Lt(t0) = 0. The
time-average velocity can be calculated from Eqs. (9) and (21) after numerically
solving the differential equations (13) and (22).

A further simplification of the collective coordinate approach can be obtained
by linearizing the nonlinear differential equations (13) and (22). To this end, let
∑∞

n=0 θ
nϕ(n)(t)/n! and

∑∞
n=0 θ

nL(n)(t)/n! be the power expansion in θ of the back-
ground field and the kink width, respectively. It is then easy to show that ϕ(1)(t)

and L(2)(t) satisfy the linear differential equations

ϕ
(1)
tt (t) + β ϕ

(1)
t (t) + ϕ(1)(t) = −η(t) (23)

and

L
(2)
tt (t) + β L

(2)
t (t) +

12

π2
L(2)(t) =

6

π2

[
ϕ(1)(t) + η(t)

]2
−

3

4

[
ϕ
(1)
t (t)

]2
, (24)

and that ϕ(0)(t) = L(1)(t) = 0 and L(0)(t) = 1. According to Eqs. (23) and (24), it

is clear that after a transient time ϕ(1)(t) and L(2)(t) become periodic functions of t
with period T . Therefore, from Eqs. (9) and (21) one can see that the time-average

velocity is approximately given by the expression

V ≈
πθ3

8T

∫ T

0
dt ϕ̃

(1)
t (t) L̃(2)(t) , (25)

where ϕ̃(1) and L̃(2)(t) are, respectively, the periodic solutions of Eqs. (23) and (24).

IV. NUMERICAL SIMULATIONS

In order to check the existence of net kink motion when symmetry conditions are

broken, we have performed numerical simulations of the damped sine-Gordon equa-
tion (2)-(3) for two particular choices of the function η(t). The initial and boundary
conditions are given by Eqs. (6)-(7) and (4)-(5), respectively. The algorithm used is

a Runge-Kutta-Verner fifth-order method with space step ∆x = 0.02, and adaptive
stepsize in time.

A. Biharmonic case

For a first numerical test, we have chosen the biharmonic function η(t) = cos(ωt)+

cos(2ωt + δ) since it is a prototypical periodic function that breaks the time-shift
symmetry given by Eq. (11) [25, 26].

In Fig.1(a), the dependence of the average velocity on the amplitude θ is shown.
The circles represent the simulation results while the solid line corresponds to the



8

-0.008

-0.004

 0

 0.004

 0.008

−π −π/2  0  π/2  π
V

θ

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0 π/2  π 3π/2 2π

b)

V

δ

FIG. 1. Top panel: Kink velocity versus the amplitude parameter, θ, for fixed δ = 0.8. The circles are the results obtained
by simulation of the sine-Gordon Eq. (2)-(3), the solid line represents the average velocity obtained by using the collective
coordinate Eq. (21), and the dashed line corresponds to the its linear approximation (25). Bottom panel: Kink velocity versus
the phase difference, δ, for fixed θ = 1. In both panels, β = 0.1 and ω = 0.1

collective coordinate approach obtained from solving the differential equations (13)
and (22). Notice the excellent agreement between the simulations and the collective
coordinate approximation even for large values of θ. With a dashed line, it has

also been plotted the average velocity obtained using the linear approximation (25)
of the collective coordinate equations. As expected, the linear approximation goes

well only for small values of the perturbation amplitude θ. In this regime, V ∼
Aθ3, where A is independent of θ. This functional dependence on the perturbation

amplitude has been proved to occur in a very general framework, independently of
the system details, by using simple symmetry considerations [27, 28]. The linear
collective coordinate equations allow us to calculate the dependence on the rest of

parameters of the pre-factor that multiplies the θ3 term.

Equally, for sufficiently small perturbation amplitudes, the general formalism de-

veloped in Refs. [27, 28] together with Eq. (10) lead to V ∼ B cos(δ + δ0), where
B and δ0 are independent of δ. This dependence of V on the phase difference, δ, is
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FIG. 2. Kink velocity versus the frequency, ω, for fixed θ = 0.1, δ = 0.8, and β = 0.2. The circles are the results obtained
by simulation of the sine-Gordon Eq. (2)-(3), the solid line represents the average velocity obtained by using the collective
coordinate Eq. (21), and the dashed line corresponds to its linear approximation (25).

displayed in Fig.1(b) for fixed θ = 1. For the chosen parameters, clearly δ0 ≈ π/2.
Once again the agreement between the collective coordinate theory (solid line) and

the simulation results (circles) is excellent. The slight deviation of the linear collec-
tive coordinate approximation (dashed line) is due to the relatively large value of θ
used.

Finally, in Fig. 2, the dependence of V on the frequency ω is shown. The value
of the amplitude employed, θ = 0.1, is rather small and for that reason the linear

approximation (dashed line) closely matches the collective coordinate results (solid
line). The collective coordinate theory fits the simulation results (circles) very well,

but only for low frequencies. For frequencies ω >
∼ 0.45, significative discrepancies

appear due to the fact that the frequency ω approaches ωph = 1 (the lowest frequency

of the phonons) and therefore the phonons can become excited. Consequently, this
outcome indicates that the collective coordinate theory has an “adiabatic” nature

and its validity requires that perturbations must be applied in a sufficiently slow
way [29].

B. Dichotomic case

In this section, η(t) is a dichotomic periodic function of time that successively takes

the values +1 and −1 during time intervals of lengths τ+1 and τ−1, respectively,
thereby providing the period T = τ+1 + τ−1. Therefore, according to Eq. (3),

the time-dependent potential U(Φ, t) can only be in one of two possible states,
U+1(Φ) = 1 − cos(Φ + θ) or U−1(Φ) = 1 − cos(Φ − θ), which differ merely by a
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FIG. 3. Time evolution of the kink center with a two-state potential given by (3) and (26). No ratchet effect is observed when
η(t) satisfies the time-shift symmetry (11) (open circles, ∆τ = 0). Net kink motion appears breaking that symmetry by setting
∆τ = −2 (full circles). The remaining parameters are θ = 0.8, ω = π/3, and β = 0.8.

translation of 2θ. It is not difficult to see that this function can be represented as

η(t) = sgn

[
sin

(
ω∆τ

4

)
− sin(ωt)

]
, (26)

where ω = 2π/T is the frequency and ∆τ = τ+1 − τ−1 ∈ [−T, T ].
The choice (26) introduces a new symmetry property not present in the biharmonic

case. Indeed, let Φ(x, t; θ,∆τ, t0) be the solution of the problem defined by Eqs. (2)-
(7) and (26), then Φ(x, t + T/2;−θ,−∆τ, t0 + T/2) is also solution of the same

problem. Taking into account that the average velocity is independent of the initial
time t0, it follows that

V (θ,∆τ) = V (−θ,−∆τ). (27)

From Eqs. (10) and (27) one obtains

V (θ,∆τ) = −V (θ,−∆τ), (28)

which implies V (θ, 0) = 0. In effect, if τ+1 = τ−1, the function η(t) given by (26)

satisfies the time-shift symmetry (11) and consequently the average velocity is zero.
Therefore, in the dichotomic case, a necessary condition for a directed kink motion
is that the difference between the residence times in each potential state, ∆τ , has

to be nonzero. Furthermore, in the case where net motion exists, the flux can be
reversed through the operation ∆τ → −∆τ .

In our numerical simulations, we have firstly verified that for ∆τ 6= 0 a nonzero
average velocity is observed. In Fig. 3, the time evolution of the kink center, X(t),

for ∆τ = −2 (open circles) and ∆τ = 0 (full circles) are compared. Only when the
time symmetry (11) is not satisfied by η(t), does net motion appear.
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FIG. 4. Comparison of the average kink velocity (circles) with the average velocity obtained using the collective coordinate
approximation (solid line) for β = 0.05, ∆τ = −2, and ω = 0.1.

In Fig. 4, the average kink velocity computed from simulations (circles) is com-
pared with the average velocity obtained from the collective coordinate theory by

using Eq. (21) (solid line). Despite considering small values of θ and a slow funda-
mental frequency ω = 0.1, the agreement is very poor. The discontinuous character

of the dichotomic function η(t) is decisive in this poor agreement due to the adia-
batic nature of the collective coordinate approximation.

Notice that here the parameter θ plays a rather different role than in the previous
section, since now the potential U(Φ, t) is 2π periodic in θ. The dependence of the
kink velocity on the parameter θ over the whole range [−π, π] is shown in Fig. 5.

The perturbation on the system is very strong for θ >
∼ π/2. For this reason, it is

necessary to apply a sufficiently large dissipation to prevent the kink from being

destroyed. The full circles correspond to a damping coefficient β = 0.8, while for
the open circles, β = 1. In agreement with our symmetry analysis, it can be clearly

appreciated that V is odd in θ [Eq. (10)]. Furthermore, it is π-periodic. In order
to understand this new symmetry, notice that given a solution Φ(x, t; θ,∆τ, t0) of

the problem defined by Eqs. (2)-(7) and (26), then π + Φ(x, t; θ − π,∆τ, t0) is also
solution of the same problem except for the initial condition (6). Therefore, if it
is additionally assumed that the average kink velocity is independent of the initial

conditions, we obtain

V (θ,∆τ) = V (θ − π,∆τ). (29)

This relation together with V (0,∆τ) = 0, also implies

V (±π,∆τ) = 0, (30)

for any value of ∆τ . This property trivially follows from the fact that the two
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FIG. 5. Kink velocity versus the translation parameter θ for fixed ∆τ = −2 and ω = π/3. The open circles correspond to a
damping coefficient β = 1, while full circles correspond to β = 0.8.

states of the potential, U+1 and U−1 coincide when θ = nπ, with n being any integer

number. Moreover, by setting θ = π/2 in (29) and bearing in mind Eq. (10), it is
easy to conclude

V (±π/2,∆τ) = 0. (31)

The properties (30) and (31) are well visible in Fig.5. The existence of maxima and
minima follows directly from the three above equations.

A similar non-monotonic behavior of the kink velocity is found when it is plotted
versus ∆τ/T for fixed T and θ, as shown in Fig. 6. The maxima and minima can be
easily understood taking into account that no net motion is possible if no temporal

symmetry is broken (∆τ = 0) and that neither is any net motion possible if no
alternation between the potential states occurs (∆τ/T = ±1). It should also be

borne in mind that there is current reversal due to the symmetry (28).
Figure 6 also provides the intuition that V must display another maximum if it

is plotted versus T for fixed ∆τ . Such behavior is shown in Fig. 7 as a function of
the fundamental frequency ω = 2π/T . The full and open circles represent results

obtained from numerical simulation for ∆τ = −2 and ∆τ = −0.5, respectively. On
the one hand, in the limit ω → 0, the ratchet effect disappears. In this limit, the
time intervals τ+1 and τ−1 are much longer than β−1, which gives roughly the time

scale of the relaxation process that takes place each time we switch the potential
state. As a consequence, the kink moves at the beginning of the residence times, τ±1,

but it stops long before those residence times finish. Hence, the distance traveled
by a kink in one of the potential states is completely recovered when the potential

switches to the other state and, consequently, no net displacement is achieved for
each period. On the other hand, neither does the ratchet effect exist when ω → ∞.
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FIG. 6. Kink velocity versus ∆τ/T for fixed T and θ. Open squares: T = 4. Full squares: T = 6. Open circles: T = 10. Full
circles: T = 14. In all cases, θ = 0.8 and β = 0.8.

In this case, τ±1 ≪ β−1, that is, the residence times are so short that the kink is
unable to respond to the perturbation. As a result, between these two limits, V has
to show at least one maximum or minimum. Additionally, one can observe several

current inversions that appear in the low-frequency region.
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FIG. 7. Kink velocity versus ω = 2π/T for fixed ∆τ . Full circles correspond to ∆τ = −2, while open circles correspond to
∆τ = −0.5. The remaining parameters are θ = 0.8 and β = 0.8.

V. CONCLUSIONS

The ratchet dynamics of sine-Gordon kinks induced by phase-perturbations has

been investigated. Symmetry analysis shows that net motion can be generated when
the phase-perturbation of the potential, θη(t), breaks the time-shift symmetry (11).

Remarkably, the kink moves with an nonzero average velocity in the absence of any
external force and maintaining the field potential symmetry at every time instant.
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An approximated theory, with an ansatz with three collective coordinates, namely
the center of the soliton, its width, and the background field, has been developed

in order to shed light on the ratchet mechanism of the kink. Using this ansatz, it is
assumed that the functional form of the soliton is preserved although the collective

coordinates become time dependent. In contrast to other soliton ratchets [4, 7, 24,
30], no ratchet effect is predicted here in absence of the background.

Moreover, when a biharmonic phase-perturbation is used, the agreement between

the collective coordinate theory and the simulations of the sine-Gordon system
is excellent, even for relatively large perturbation amplitudes. However, when a

dichotomic perturbation is employed, the agreement is poor, thereby creating the
challenge of finding a better theory for discontinuous perturbations.

The dependence of the kink average velocity on the system parameters has been
explored in detail. The rich phenomenology observed can be understood through
symmetry considerations that allow certain features to be explained, such as the

suppression of transport for particular values of the parameters, non-monotonic
behaviors and current inversions.

Although we specifically investigate the existence of this novel soliton ratchet
mechanism within the framework of the sine-Gordon equation, the obtained results

can easily be generalized to other models with topological soliton solutions, such as
the double sine-Gordon and φ4 systems [30, 31].
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