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Universidad de Sevilla, C/ Virgen de África, 7, 41011-Sevilla, Spain
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Abstract
We consider the existence, stability and dynamics of the nodeless state and fundamental
nonlinear excitations, such as vortices, for a quasi-two-dimensional polariton condensate in the
presence of pumping and nonlinear damping. We find a series of interesting features that can
be directly contrasted to the case of the typically energy-conserving ultracold alkali-atom
Bose–Einstein condensates (BECs). For sizeable parameter ranges, in line with earlier
findings, the nodeless state becomes unstable towards the formation of stable nonlinear single
or multi-vortex excitations. The potential instability of the single vortex is also examined and
is found to possess similar characteristics to those of the nodeless cloud. We also report that,
contrary to what is known, e.g., for the atomic BEC case, stable stationary gray ring solitons
(that can be thought of as radial forms of Nozaki–Bekki holes) can be found for polariton
condensates in suitable parametric regimes. In other regimes, however, these may also suffer
symmetry-breaking instabilities. The dynamical, pattern-forming implications of the above
instabilities are explored through direct numerical simulations and, in turn, give rise to
waveforms with triangular or quadrupolar symmetry.

Keywords: polaritons, BEC, coherent structures, nonlinear Schrödinger equation
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1. Introduction

One of the most rapidly developing branches of studies in
the physics of Bose–Einstein condensation is that of exciton–
polariton condensates in semiconductor microcavities. Only
a few years since their experimental realization [1–4],
exciton–polariton Bose–Einstein condensates (BECs) have
become a prototypical system for studies at the interface
of nonequilibrium physics and nonlinear dynamics. More

specifically, the radiative lifetime of the polaritons provides a
short relaxation time scale in the system of the order of 1–10 ps
[5]. At the same time, the light mass of these quasi-particles
provides them with a considerably higher condensation
temperature. Moreover, the photonic component of the
system only allows for a short lifetime and no thermalization.
Instead, the exciton–polariton system produces a genuinely
non-equilibrium condensate, requiring the external pumping
of an excitonic reservoir, which in turn balances the polariton
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loss [5, 6]. This ‘open’ nature of the system, featuring gain and
loss, is then responsible for its rich pattern-forming capabilities
that have been recently summarized, e.g., in [7–9].

Our interest in the prototypical two-dimensional (2D)
setting of the system will be precisely at the level of the
interplay of the intrinsic nonlinearity due to inter-particle
interactions and the gain/loss nature of the system. This
interplay has led to a wide variety of remarkable observations
(and theoretical explorations) including, but certainly not
limited to, features such as flow without scattering (analog
of the flow without friction) [10], the existence of vortices
[11] (see also [12] for vortex dipole dynamics and [13] for
observations thereof), persistent currents as well as higher
charge vortices [14], collective dynamics [15], solitary wave
structures such as bright [16], dark [17] and gap [18] solitons,
and even remarkable applications such as spin switches [19]
and light emitting diodes [20] operating even near room
temperatures.

The approach that has been used most commonly in
theoretical studies of exciton–polariton BECs relies on the
analysis of two coupled evolution equations for the polaritons
and the exciton reservoir which enables their production. In
particular, the relevant model assumes the form of two coupled
complex Ginzburg–Landau (cGL) equations describing the
evolution of exciton and photon wavefunctions [21–23].
However, an alternative that has been proposed [9, 24–26] in
the case of incoherent and/or far blue-detuned laser pumping
(see, e.g., [9] and references therein) suggests that a single cGL
equation for the macroscopically occupied polariton state may
be used instead; such a model yields results consistent with
experimental observations [27] (see also [8, 9]).

In what follows, we will consider the case of incoherent
pumping and use in our study a single cGL equation. Our
aim is to analyze in detail some of the fundamental states
of the 2D system. In particular, in earlier works these
states have been chiefly obtained as attractors of the relevant
gain/loss dynamics, revealing the pattern forming complexity
that emerges spontaneously in the system. Here, our aim is not
only to revisit fundamental states (such as the nodeless cloud or
the single vortex) and explore their parametric dependence by
developing two-parameter bifurcation diagrams (in parameters
such as the gain strength and its spot radius); it is instead to
provide a detailed view towards the stability of these states
unveiling their spectral properties and the somewhat unusual
nature of their instabilities. In addition to these more standard
states, we will also consider states that, to the best of our
knowledge, have not been previously presented in the context
of polariton condensates, although they have been discussed
for atomic condensates [28]. A principal example of this form
is the so-called ring dark soliton (RDS) which, remarkably,
although never stable in the context of atomic BECs [29–31],
can in fact be shown to be stable in suitable (gain) parametric
regimes here. This is, effectively, a potentially stable radial
form of a Nozaki–Bekki hole [32] that was previously explored
in cGL contexts [33], yet was not found to be stable in these
settings; instead, it was found there to potentially initiate
a form of spiral wave turbulence. Importantly, this ring
soliton structure was observed in polariton superfluids in

a very recent experiment7. We also reveal the symmetry-
breaking instabilities of this ring soliton structure and unveil
a series of solutions without radial symmetry that may
spontaneously emerge as a result of such instabilities. Among
them, we highlight the potential for states with triangular or
square/rectangular symmetry, whose parametric dependence
(as stationary states) we also explore. Finally, for all relevant
states, we offer a number of direct numerical simulations that
yield insight towards the manifestation of the instabilities and
the spontaneous emergence of patterns such as vortex lattices,
but also of nonvortical patterns without radial symmetry.
We should also note in passing here that a similar study
focusing, however, predominantly on the existence properties
of some of the solutions considered here (rather than on their
stability, which is the principal emphasis herein), and chiefly
considering the case without a parabolic trap, was recently
published [35].

Our exposition is structured as follows. In section 2,
we offer the theoretical setup and techniques that will be
used. In section 3, we present the numerical results in two
subsections: the first one provides the bifurcation structure
and parametric continuations/stability analysis of the relevant
solutions (initially this is done for the nodeless cloud and single
vortex, and subsequently for the ring and related symmetry
broken states); the second one examines the results of direct
numerical simulations results. Finally, in section 4, we
summarize our findings, as well as mention some interesting
directions for potential future studies.

2. Model setup

As indicated above, we will consider the cGL model developed
in [24–26] (see also [9] and references therein):

i∂tψ = {−∇2
⊥ + r2 + |ψ |2 + i

[
(χ(r) − σ |ψ |2)]} ψ, (1)

where ψ denotes the polariton wavefunction trapped inside a
2D harmonic potential, ∇2

⊥ ≡ ∂2
x + ∂2

y is the transverse (2D)
Laplacian and r2 ≡ x2 +y2. In fact, the above equation has the
form of a ‘modified’ Gross–Pitaevskii equation (GPE), which
is the traditional lowest order mean-field model describing
atomic BECs [36, 37]: the differences of equation (1) from
the traditional form of the GPE can be traced in the presence
of (i) the spatially dependent gain term with

χ(r) = α�(rm − |r|), (2)

where � is the step function generating a symmetric spot of
radius rm and strength α for the gain, and (ii) the nonlinear

7 It is especially interesting and relevant to note here that very soon after the
posting of this paper (under index 1308.6798) in arXiv, a new experimental
paper was posted [34]. This paper principally focuses on the spontaneous
emergence of ring dark solitons in recent state-of-the-art, highly nonlinear
experiments in polariton superfluids; see especially figures 2–4 therein. This
is a remarkable, independent verification of the robustness of the structures
and of the principal associated predictions that are presented herein. Notice
that in that setting the formation of the waves is achieved by generating a drop
of polariton condensate which was instantaneously created (and allowed to
evolve) on the backdrop of a previously unperturbed state. This is sufficient
to spontaneously give rise to the ring dark solitons (and to other remarkable
features including shock waves etc).
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saturation loss term, of strength σ . Estimates of the relevant
physical time and space scales, as well as physically relevant
parameter values, are given, e.g., in [24]. It is relevant to
mention that although our results below are given in the context
of equation (1), we have ensured that similar phenomenology
arises in the model of [21–23], for suitable parametric choices.
In that light, the phenomenology that is reported in this
work should be broadly relevant to (2D) polariton BECs
independently of model specifics. We also note in passing
that Ginzburg–Landau-type models, similar to the one of
equation (1)—i.e. including a localized gain term (but, in most
cases, in the one-dimensional setting and without the external
potential)— were recently studied in the context of nonlinear
optics [38] and in the physics of magnon condensates [39].

In what follows, we will consider the stationary solutions
of this 2D model, in the form ψ(r, t) = ψ0(r) exp(−iµt)

where µ is the dimensionless chemical potential, and the
stationary state ψ0(r) is governed by the elliptic partial
differential equation of the form:

µψ0 = {−∇2
⊥ + r2 + |ψ0|2 + i

[
(χ(r) − σ |ψ0|2)

]}
ψ0. (3)

Importantly, an additional population balance constraint, i.e.
an overall balancing of gain and loss within the 2D domain,
has to be enforced: this condition is dN/dt = 0, where the
norm N = ∫

d2r|ψ0|2 represents the number of polaritons. It
is straightforward to show that the balance condition can be
readily expressed as:

∫
d2r (χ(r) − σ |ψ0|2)|ψ0|2 = 0. (4)

It then follows that the above equation self-consistently selects
the particular value of the chemical potential once the other
parameters (i.e. α, σ and rm) are fixed. We note in passing
the significant difference of this trait from the Hamiltonian
atomic BEC case, where there exist monoparametric families
of solutions as a function of µ (which is a free parameter
there rather than one dependent on the remaining gain/loss
parameters). Hence, in the computation of the system, it is
critical to enforce the condition (4), as this condition will
determine in addition to the profile ψ0, the associated value
of µ.

Once stationary solutions of the differential-algebraic
system of equations (3)–(4) are identified, their linear (spectral)
stability is considered by means of a Bogolyubov–de Gennes
(BdG) analysis [36, 37]. Specifically, small perturbations (of
order O(δ), with 0 < δ � 1) are introduced in the form

ψ(x, y, t) = e−iµt [ψ0(x, y) + δ p(x, y, t)] , (5)

with
p(x, y, t) ≡ a(x, y)e−iωt + b	(x, y)eiω	t . (6)

Then, the ensuing linearized equations are solved to O(δ),
leading to the following eigenvalue problem:

ω

(
a(x, y)

b(x, y)

)
=

(
L1 L2

−L∗
2 −L∗

1

) (
a(x, y)

b(x, y)

)
, (7)

for the eigenfrequency ω and associated eigenvector
(a(r), b(r))T, and L1 and L2 are the following operators:

L1 = −µ − d2

dx2
− d2

dy2
+ r2 + 2(1 − iσ)|ψ0|2 + iχ(r),

L2 = (1 − iσ)ψ2
0 .

When the eigenfrequencies are found to possess a positive
imaginary part, then, per the ansatz of equation (6), an
instability is expected to arise. On the other hand, if all the
spectrum has Im(ω) < 0, then the corresponding structure is
spectrally stable. When a structure is found to be unstable, we
conduct direct numerical simulations of equation (1) in order
to explore the evolution of the instability and the state towards
which the dynamics is attracted.

We now proceed to study the existence, stability and
nonlinear dynamics of the different configurations of interest,
namely the nodeless cloud, the single-charge vortex and the
RDS-like waveform, as well as of some symmetry-breaking
structures that result from the evolution dynamics of these
states, when unstable.

3. Numerical results

3.1. Existence and spectral stability

3.1.1. Nodeless cloud and central vortex We performed
a search of nonlinear excitations for different values of the
parameters. In what follows, we chose to keep σ = 0.35
(following the work of [40]) fixed, and vary both the gain
strength, α, and the gain spot size radius, rm, in order to
develop two-parameter bifurcation diagrams characterizing
the stability properties of the different states of interest.
The relevant solutions were numerically obtained by using
a (modified) Newton–Raphson method8 . This is done in
order to identify (and perform continuations on) solutions of
equation (3), together with condition (4). This system forms a
partial differential-algebraic set of equations (PDAE).

We start by exploring the more fundamental solution
profiles, namely the nodeless cloud (NC) and the central vortex
cloud (CV).

It would be relevant to recall here, for comparison
purposes, the stability properties of these waveforms in the
Hamiltonian case of α = σ = 0. There, the NC is the ground
state of the system and is neutrally stable for all parameter

8 The modification of the Newton–Raphson method consists in performing
the (singular) Jacobian inversion by means of a LSQR method. The Newton–
Raphson is a fairly standard method to solve boundary value problems which
amount to systems of nonlinear equations (upon suitable discretization); see
e.g. [41] for a detailed analysis of the method and its convergence properties,
including its major advantage, namely the quadratic convergence, provided
a sufficiently good initial guess. This is also the potential weakness of the
method, namely an inefficient initial guess may not converge or converge to
an entirely different solution. Here, we use the method along side parametric
continuation (i.e. we find the solution for a set of parameters and then slightly
modify the parameters using as initial guess for the Newton method the solution
at the previous step/parameter value). It should also be noted that indeed for a
single parameter value, multiple solutions (of different types) may coexist. We
will see multiple such examples below. In these cases, the Newton–Raphson
method converges to these different solutions by virtue of the use of different
initial seeds.
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Figure 1. Stability domains of nodeless cloud (NC) and central
vortex (CV) soliton-like solutions for σ = 0.35. The stable domains
correspond to the regions between the curves. In a wide range of
values within the 2D parameter space, these solutions coexist and
may even be concurrently stable. Circles indicate points shown in
the following figures for NC and CV solutions. All quantities shown
here, and in the figures that follow, are dimensionless. Curves in this
figure (as well those in figures 5 and 7) were smoothed from data
with step sizes of 
α = 0.1 and 
rm = 0.1, or lower.

values [36, 37]. Similarly, and although it is an excited state
of the system (bearing an ‘anomalous’ or ‘negative energy’
mode), the CV is generically stable, independently of the
chemical potential (or effectively the number of atoms) of the
system [42].

The results of the scan of the parameter space are
represented in figure 1, where we show the limits of stability
of the NC and CV. Interestingly, it can be observed that while
there are wide parametric regimes where the NC is stable, there
are also large intervals of parameters where this solution is, in
fact, unstable, contrary to what is known to be the case in
atomic BECs. Furthermore, the stability region for the NC
configuration is bounded both from above and from below,
unlike the 1D scenario of [40] where the stability region is
only bounded above. Since there is loss everywhere, as the
spot size goes to zero there is only enough gain to sustain
a progressively smaller condensate, until it disappears in the
limit of rm = 0. On the other hand, also the CV features wide
intervals of stability, but also ones of instability. It can, in
fact, be seen that the feature identified as ‘stability inversion’
in [40] for the case of 1D polariton BECs is still present here.
Namely, there are regimes where the NC is stable but the CV
is not, but also—in reverse—there are regimes where the CV
is stable, but the NC is not.

In figure 2 we show the density and phase profiles of the
NC (top two rows) and CV (bottom two rows) solutions for
varying rm. It is clear that as the radius of the drive increases, so
does the size of the condensate. This is in contrast to what is the
case with atomic BECs, where the size of the NC is controlled
solely by the (parabolic) trap: here, the gain (and its interplay
with the nonlinear loss/saturation) plays a critical role in the
size of the waveform. For the CV solutions of the bottom two
rows, notice the characteristic 2π phase circulation.
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Figure 2. Density and phase profiles of nodeless NC (top two rows)
and CV configurations (bottom two rows) for α = 2.0 and
σ = 0.35. The values of α and rm used correspond, left to right, to
points A1–D1 in figure 1. Dashed–dotted circles, from here on,
indicate the boundary of the gain spot.
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Figure 3. Eigenfrequencies (ω = ωr + iωi) associated with the
spectral analysis of the NC (top) and CV (bottom) waveforms for
the same parameter values as in figure 2. Note how the instability of
both the NC and the CV in these cases emerges from a band of
continuous spectrum crossing into the unstable half-plane, as rm is
increased. This predisposes us towards a ‘dramatic’ instability
evolution that will significantly modify the background state and
will result, as we see below, in the formation of vortex lattice
configurations.

We now turn to an examination of the stability of the
different configurations. The spectral planes (ωr, ωi), where
the subscripts r and i denote, respectively, the real and
imaginary parts of the eigenfrequency, for the NC and the
CV configurations are illustrated in figure 3. There, it is
evident that except for a weak instability arising through Hopf
bifurcations for small values of rm, for most intermediate
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Figure 4. Profiles (upper two rows) and phase (bottom row) of GR
solitons, and triangular solutions (TS) for the system parameters
marked by (green) dots in the 2D plane of figure 5; σ = 0.35.
Dashed (red) lines represent the Hamiltonian dark ring for the same
chemical potential (panels A and C). Panel F represents a TS
solution. Note its asymmetry both in density and phase.

values of rm, both the NC and the CV configuration are
dynamically stable. The predominant instability that arises for
both configurations is the one for higher values of the gain
radius rm in this continuation. In that case, the instability
arises in a less customary (for such structures, at least in their
Hamiltonian form) way: entire segments of the continuous
spectrum cross over the axis of ωi = 0 (see right panels
of figure 3) and lead to bands of unstable eigenfrequencies.
It is, thus, in a sense, perhaps expected that the entire
‘background state’ of the system will be highly unstable
towards a fundamentally different pattern, an expectation that
indeed we will see to be confirmed by the direct numerical
simulations featuring the instability evolution of these states.

3.1.2. Gray ring solitons and triangular states In addition
to the more fundamental solutions explored above, we have
identified a host of previously undisclosed, to the best of
our knowledge, solutions of the 2D polariton BEC system
(see footnote 7). Arguably, the most remarkable among
them is the gray ring (GR) soliton, some typical density
profiles of which are shown in figure 4. The depicted profiles
correspond to the points shown as (green) dots in the 2D
existence/stability (rm, α)-plane (i.e. width and amplitude of
the parametric gain) shown in figure 5. The plane itself
reveals some of the interesting potential of such solutions,
including the possibility of symmetry-breaking bifurcations
giving rise to a new triangular form of solutions (denoted
as TS). An additional remarkable feature is that while such
RDSs were proposed in both atomic condensates [29–31]
and in cGL gain/loss systems (as radial Nozaki–Bekki holes)
in both contexts they were found to be unstable and thus
break up into more prototypical coherent structures, including
vortices and spiral waves, respectively. We now turn to a
more detailed examination of their properties including the
existence and stability domains, also highlighting similarities
and importantly differences from the above atomic case,
including the generically gray nature of such excitations in
our polariton setting.

The GR is always unstable for α < 4.0, where it coexists
with the NC over most of this spot size range, but it can be
stable above that gain value. There it can only be identified
within the parametric range indicated by the curves in figure 5.

4 6 8
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E

F

r m
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NC−GR

BEC−GR
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Figure 5. Stability domains of GR solitons and TS for σ = 0.35.
Solutions are stable except that the GR is unstable where the TS
exists. For the distinction between GR solitons arising from the
Hamiltonian BEC limit (BEC-GR) and those emerging from the NC
(NC-GR), see details in the text.

Interestingly, what is illustrated by the parametric plane
is a progressive convergence of the GR and NC solutions, as
represented by the label NC-GR in figure 5. This gradual
‘merging’, at the solution profile level, is signaled by the
progressive increase of the phase variation of the NC until it
reaches a value aroundπ . Recall that from the results presented
for the NC branch (figure 2), the phase varies by less than π/2.

The admittedly somewhat arbitrary distinction between
the NC branch and the GR one (and their hybrid NC-GR form)
herein was based on whether there is a dip in the density profile
(NC-GR) or not (NC). In particular, we observe that as the
amplitude α of the gain grows, the NC becomes progressively
more modulated (as already seen and explained in [24]).

To be more precise, we point out that the distinction
between accordingly termed BEC-GRs and the previously
discussed NC-GRs is obtained through the nonmonotonic
dependence of their dip versus the gain radius rm. More
specifically, for GRs, the depth of their dip (measured as the
difference of the density at the center minus the density at the
dip) is found to increase with increasing rm, while NC-GRs
are instead characterized by a decreasing dip (and NCs by a
nonexistent one). In reality, these solutions seem to seamlessly
merge as the critical points identified are traversed, however,
the above distinctions were given in order to better appreciate
the ‘origin’ of the different solutions.

In fact, there is an additional connection of such GR
soliton solutions with their BEC analogues discussed earlier
in [29–31]. In particular, as we approach the limit of weak and
narrow drive (α → 0 and rm small), the solution increasingly
resembles the BEC RDS of the above works. This is illustrated
in panels A and C of figure 4 where, in addition to the
polaritonic GR soliton profile, the corresponding Hamiltonian
case is also shown for the same chemical potential. As can
be seen, the dip in both cases occurs at the same position, that
is distinct from the gain spot radius. This (and the overall
quality of the density comparison) is a strong indication of the
common origin of this solution with its Hamiltonian sibling.

5
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Hence the label BEC-GR in figure 5, and in the discussion
above. Recalling that the RDS in the Hamiltonian case is
always unstable, we identify herein a critical role of the gain
along with the saturating loss terms in inducing a limited region
where this GR soliton can be stabilized.

Thus, the origin of the NC and GR solutions is indeed
distinct, as in the BEC-GR case, the solutions physically
emerge as a result of the interplay of the linear potential and
its modes with the effective nonlinearity of the system. On the
other hand, in the NC-GR case, the gain (and loss) structure of
the system plays a critical role in inducing a flux pattern that,
in turn, creates the observed dip in the density profile.

In light of our distinction, the density profiles observed
in [24], that exhibit a gradual deepening of the shoulder (e.g.
as α, the strength of the gain, is increased) are still NCs and
not GRs. Thus, the former observations can be considered
‘precursors’ of our GR states (but not examples of ones such).

An additional comment should be made here about the
gray nature of these rings. Contrary to what may be expected
from their BEC siblings featuring a phase shift of π when
stationary (and associated with a finite velocity when they are
‘gray’), in the polaritonic case, the rings are generically found
to be gray. This is, in fact, reminiscent of what was recently
found also in the context of complex PT -symmetric potentials,
e.g., in the work of [43, 44]. In both cases, the origin of the
phenomenon is the same: in particular, the complex nature (of
the potential in the PT -symmetric case and of the gain/loss
structure in the cGL setting herein) of the terms in the equation
produce a genuinely complex solution with a nontrivial phase
structure and an associated ‘particle flux’ along the stationary
spatial profile. These features are absent in the BEC case,
where the stationary RDS solution is genuinely real.

We note in passing that we found another radially
symmetric soliton solution resembling the GR soliton. This
solution has its dip closer to the gain spot size, but it was never
found to be stable. It is therefore related to this length scale,
contrary to what is the case for the GR solutions focused upon
here. Due to the generic instability of the waveform apparently
slaved to the gain, we do not explore it further here.

The spectral properties of the GR soliton state have been
found to be significantly different than those of the previous
two fundamental states (NC and CV). In particular, as can be
seen in figure 6, the instability of this state as rm is increased
stems from the fact that eigenfrequencies cross the origin of the
spectral plane. This predisposes us towards a fundamentally
different instability, possibly arising through a symmetry-
breaking pitchfork bifurcation. We will see also how this
expectation is manifested in the direct numerical simulations
of the following section. This symmetry-breaking bifurcation
is substantiated in the parametric plane of figure 5 where a
region has been denoted under TS (triangular solutions). As
the curve outlining this region is crossed, the BEC-GR soliton
solutions undergo the above-mentioned pitchfork bifurcation
and spontaneously give rise to such TS. The TS states are
generically found to be stable, a feature that will render them
natural attractors for the BEC-GR soliton unstable dynamics in
the parametric range of TS existence, as will be corroborated
in section 3.2.
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3.1.3. Quadrupoles In the same spirit as the triangular
solutions identified above, we have also been able to find
solutions with quadrupolar symmetry. These solutions are
especially relevant below the region of stability of the NC, as
well as that of the (BEC-)GR. Such solutions are characterized
by four dips of the density, at which locations the phase portrait
shows a winding of 2π (figure 8). This type of solution is also
reminiscent of a corresponding quadrupole (vortex) solution
in the realm of atomic BECs [42]. In the latter setting, the
solutions are critically induced by the parabolic trap, created
from the linear limit thereof (as a complex combination of
two of the second excited states of the 2D quantum-harmonic
oscillator).

The regions of stability of the quadrupoles in the two
parameter plane of (α, rm) are shown in figure 7. Different
classes of instability can be found, leading to exponential,
oscillatory or combined decay. Nevertheless, islands of
stability are also identified within which, as we will see below,
the quadrupolar state can offer a dynamical attractor starting,
e.g. from GR soliton initial data, but also for both the NC and
the CV.

As the gain strength grows, we find that the quadrupole
solution profiles tend to a more elongated profile along a
symmetry axis, reaching a form where the four dips nearly
coalesce in two. Nevertheless, the phase (and the vorticity,
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Figure 8. Density and phase profiles of QS for the values of α and
rm corresponding to points A–G in figure 7.

not shown) clearly show that the four vortices of alternating
positive and negative charge are still separate.

3.2. Dynamical evolution

As a way of confirming the stability results found above,
and also of exploring the pattern-forming outcomes of
the dynamical evolution of the identified instabilities, we
numerically integrated the full equation of motion, namely
equation (1). Our initial conditions consisted of profiles in
the form of the above obtained (up to a prescribed numerical
tolerance) solutions, suitably perturbed to accelerate the decay,
if unstable, or confirm that it returns to the attracting solution,
if stable. The perturbation added for unstable waveforms was
in the form of the profile of the eigenvector with the most
unstable eigenfrequency. For the solutions expected to be
stable, random noise was used. The latter results are not shown
(they were only used to confirm the spectral stability results),
but it was found that the solutions remained unaltered after
propagation for time up to t = 1000.

Examples of the unstable scenarios are presented below9.
The results presented correspond again to points of the set
A1–D1 (see figure 1) that are unstable (for each of NC and/or
CV); other values lead to a qualitatively similar behavior.
Figure 9 illustrates the case where the NC has just become
unstable (for rm = 2.8, while the stability boundary for this
value of α = 2 is rm = 2.7). In this case, we can observe
that the NC becomes unstable to an azimuthal modulation
with eight-fold symmetry and eventually, upon the nonlinear
evolution of the instability, decays to a pair of rotating vortices.
A further increase of rm = 3.2 results in a similar evolution
(see figure 10), but the end result is a rotating lattice of four
vortices. Here we see a different initial symmetry in the
dominant unstable mode (which appears to create a hexagonal

9 Movies for the dynamical evolution presented in figures 9–18 are presented
as online supplementary material available at stacks.iop.org/JPhysCM/26/
155801/mmedia. These movies may significantly facilitate the understanding
of the unstable dynamical evolution for the reader.
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Figure 9. Dynamical evolution of a NC state for parameter values
α = 2.0 and rm = 2.8, which is just outside of the stability region
(see point C1 in figure 1).
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Figure 10. Dynamical evolution of a NC state for parameter values
α = 2.0 and rm = 3.2 (see point D1 in figure 1). The resulting
configuration of 4 vortices is rotating.

modulation; see, e.g., the snapshots at t = 10 and t = 20),
but also a nonlinear intermediate step in the evolution (see,
e.g. snapshot at t = 30). It is naturally expected that, as
rm increases and the polariton condensate accordingly grows,
more vortices can be ‘accommodated’ therein, i.e. brought in
the domain from the outside, and hence larger lattices created;
this is in line also with the observations of [24]. The evolution
typically starts with a modulation around the edge of the
cloud that starts rotating. Comparison with the profile of the
most unstable eigenvector suggests that the latter is indeed
responsible for this (increasing) modulation. It eventually
leads to one or more vortices spiraling (from the periphery)
to the central region of the cloud until a stable and symmetric
arrangement of vortices is achieved. The number of vortices
(in the parameter range studied) can vary from one up to 21,
either in a ring shape, with one more at the center, or as a lattice
when their number grows.

The evolution of the CV solution features a similar
behavior to the NC for parametric values beyond the upper
stability boundary of this solution. In the region below the
lower stability boundary, where the NC is generically stable,
the CV typically decays to the NC (see, e.g., figure 11). Above
the higher stability boundary of the CV solution, the vortex
decays to a lattice of vortices as shown in figure 12. It is
interesting to note that the original evolution of the instability
results in more vortices within the cloud than the resulting
asymptotic state, so there is a ‘distilling’ process taking
place, which finally results in the rotating square configuration
observed at longer times (see for the same parameters, the
asymptotically favored configuration of figure 10).

We now turn to the dynamical results for the evolution
of the GR soliton solutions. Above its stability region, the
GR soliton typically decays towards the NC, which for this
parametric region is well within its own range of stability
in the (α, rm) plane; this is shown, e.g., in figure 13, for
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α = 4.2 and rm = 1.3. In contrast, below the lower stability
threshold of the GR, the latter may decay to different solutions
depending on the exact parameters (and perturbations) used.
An example of a relevant possibility is shown in the top two
rows of figure 14 for α = 4.2 and rm = 0.7. This case reveals
the possibility that the symmetry-breaking instability of the
GR soliton (see the discussion of the previous section) may
result into a quadrupolar configuration of the type explored in
the previous section. On the other hand, the bottom two rows
of figure 14 illustrate a different scenario for the parameter
set α = 6.9 and rm = 0.8, which can be identified as being
within the region of the symmetry-breaking instability towards
triangular solutions. In particular, the symmetry breaking
spontaneously manifests itself dynamically resulting towards
a configuration with triangular symmetry, as may be expected
based on our existence/stability earlier findings. Solutions with
this symmetry were previously identified in other contexts,
e.g. [45]. Nevertheless, these results, and the absence of
vortex lattice formation in this case, are in accordance with
the results of the stability analysis of the GR soliton presented
above and its fundamentally different instability mechanism in
comparison to the NC or CV configurations.
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Figure 14. The top two rows show the dynamical evolution of a GR
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evolution of a GR soliton state for parameter values α = 6.9 and
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Figure 15. Dynamical evolution of a QS for parameter values
α = 0.2 and rm = 2.5 (see point labeled A in figure 9). The final
state is a rotating lattice of three vortices.

The evolution of the QS solutions shows a range of
behaviors, from a decay towards a NC (for points D and G in
figure 7) to rotating lattices of vortices (A, B, C and F). Among
these, we highlight, in particular, the scenario A (α = 0.2,
rm = 2.5), shown in figure 15, where the final rotating cloud
is highly distorted, as if more vortices were trying to join
the three already in the central region of the cloud. The QS
can also display an oscillatory instability, as in figure 16 (see
relevant movie provided in the online supplementary material
(stacks.iop.org/JPhysCM/26/155801/mmedia), where this
instability is more transparently demonstrated), where the
two dips at the extrema of the axial central lobe perform an
oscillation, each pair with opposite phase than the other. Yet
another situation is exemplified in figure 17, where a lattice
of vortices results, but unlike all others so far shown herein
the inner vortices rotate at a different rate than the outer ones.
Finally, the case F (see figure 18) results in an excitation where
a lattice with seven vortices (one at the center and an hexagon
of vortices around it) rotates very slowly.

We should remark here that the vortex lattices (with
different numbers of vortices) observed herein through the
unstable dynamical evolution of our states correspond to the
same states as reported earlier in [24] and further elaborated,
e.g., in [26]. Nevertheless, our aim here is to show that such
states arise from the unstable dynamics of not only fundamental
states (such as the NC and CV) but also from more complex
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states such as the quadrupole ones. In addition, our scope is
to also show that in regimes of drive where such lattices may
exist, it may also be possible to dynamically result in other
states including, e.g., the ones with triangular symmetry (as,
e.g., in figure 14).

4. Conclusions

In the present work, motivated by the intensely studied theme
of polariton condensates, we offered a detailed view of the
existence and stability, as well as the nonlinear dynamical
properties of some prototypical states appearing in such
systems. These states included fundamental earlier revealed
waveforms such as the nodeless cloud (NC) and the cloud with
a central vortex (CV). For these, we presented a systematic
two-parametric analysis of their stability properties and how
these are reflected in the corresponding nonlinear dynamics.

The fundamental (especially in the atomic BEC case)
nodeless state was found to be stable only in a limited range
of parameters. The principal excited state, namely the central
vortex state (which is again generically robust in atomic BECs),
was found to, in fact, potentially exist as a stable object for

parameters where the NC is no longer stable. Vice versa, the
nodeless cloud was also stable in regimes where the vortex was
not, presenting a 2D generalization of the stability inversions
reported earlier in 1D counterparts of the model [40]. Outside
their stability ranges, they were both found to decay towards a
series of rotating vortex lattices, in line with earlier numerical
observations [24]. However, here the precise (Hopf) nature
of the instability was elucidated and the unusual associated
morphology featuring the destabilization of an entire band of
continuous spectrum eigenfrequencies was revealed.

As regards vortices, it should also be noted that
we attempted to identify doubly charged vortex solutions,
however, we were unable to obtain spectrally stable such
structures in the realm of the present model, i.e. such states
were identified yet were always found to be dynamically
unstable.

Such fundamental nonlinear wave states are expected to
exist in this system, at a qualitative level, due to the interplay
of dispersion and effective nonlinearity (due to the polariton–
polariton interaction), as well as that of gain (due to generation
of the polaritons from the exciton reservoir) and loss (due
to the finite polariton lifetime). However, in our view, it
is much harder to qualitatively explain the stability features
observed, although some relevant speculation can be offered.
For instance, it appears that the vortices can only be stabilized
when rm (the radius of the gain spot) is sufficiently large, i.e. it
should be able to encompass a vortex core and anyway should
be larger than the healing length (of O(1) in our setup). On the
other hand, for the NC to be robust, we need sufficiently high
gain (so as to balance the dissipation-induced loss), as well as
a sufficiently large radius of gain drive rm so as to favor the
original radial NC structure.

In addition to these simpler structures, we also explored
more elaborate ones, especially in the form of a gray ring (GR)
soliton structure, which was connected both to the NC but also
to the ring dark soliton state of atomic BECs. The inclusion of
gain and loss in our complex Ginzburg–Landau-like equation
was found to play a critical role in the potential stabilization of
such ring states. Their generic gray structure was also justified
by the flux induced by the gain/loss. Aside from identifying
the stability islands of such GR soliton states, their potential
dynamical instabilities and associated bifurcations were also
revealed. These were shown to lead to symmetry-breaking
events generating (and asymptoting to) solutions of potentially
triangular or quadrupolar structure. These states, in turn, were
also identified as exact stationary solutions and their own two-
parametric stability properties were explored.

A different set of gray ring structures was found but was
never stable, from what we could determine. This solution is
mainly characterized by a central peak lower than the outer
ring. It exists in regions in parameter space where other
solutions exist stably. Thus for certain regions of parameters it
is possible to find a NC, a GR and this other, always unstable
gray ring soliton.

All the results reported were for the parameter σ = 0.35,
as stated before. Both from our previous results in the 1D
setting, and from intuition and case examples considered, we
expect that extending the continuation to other (nearby) values
of σ yield qualitatively similar results.
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There are many directions towards which this exploration
could further proceed. On the one hand, in the setting with the
parabolic trap, it is interesting to explore the detailed stability
of vortex clusters and progressively growing configurations
towards vortex lattices. Understanding these clusters is still a
very active area of research in atomic BECs [46]; extending
relevant (vortex) particle approaches (or distributional ones
[47]) in order to understand the properties and internal modes
(in analogy to the Tkachenko modes of atomic BECs [48])
of the system of a few or of many vortices, would be of
particular interest in its own right. Yet another interesting
direction, given the significant progress in imposing potentials
of different kinds including periodic ones and identifying
states critically supported by them (such as the gap solitons
of [18]), would be to explore the interplay of such clusters
and lattices with external potentials and their structural phase
transitions between different energetically preferred states as,
e.g., the lattice parameters of an external periodic potential are
varied [49]. These and other related topics are presently under
consideration and will be reported in future publications.
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