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Abstract We study the dynamics of matter waves in an effectively one-dimen-
sional Bose–Einstein condensate in a double well potential. We consider in par-
ticular the case when one of the double wells confines excited states. Similarly to
the known ground state oscillations, the states can tunnel between the wells
experiencing the physics known for electrons in a Josephson junction, or be self-
trapped. Numerical existence and stability analysis based on the full equation is
performed, where it is shown that such tunneling can be stable. Through a
numerical path following method, unstable tunneling is also obtained in different
parameter regions. A coupled-mode system is derived and compared to the
numerical observations. The validity regions of the two-mode approximation are
discussed.

1 Introduction

One fundamental physical phenomenon observable on a macroscopic scale is the
Josephson tunneling of electrons between two superconductors connected by a
weak link, predicted by Josephson in 1962 [1]. It is due to the macroscopic wave
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functions with global phase coherence that have a small spatial overlap. The first
observation of this effect was reported by Anderson et al. [2].

Since the only requirement for the occurrence of Josephson tunneling is a weak
coupling, [3] other weakly connected macroscopic quantum samples were also
expected to admit such tunneling. For neutral superfluids, Josephson tunneling has
been observed in liquid 3He [4] and 4He [5]. In the context of Bose–Einstein
condensates (BECs) [6–12], the prediction was made by Smerzi et al. [13–15],
followed by the experimental observation where a single [16, 17] and an array [18]
of short Bose–Josephson junctions (BJJs) were realized. The idea of BJJs has also
been extended to a long BJJ [19, 20], which mimics long superconducting
Josephson junctions. Such a junction can be formed between two parallel quasi
one-dimensional BECs linked by a weak coupling. Atomic Bose–Josephson vor-
tices (BJVs) have also been proposed in [19, 20]. The solutions are akin to
Josephson fluxons in superconducting long Josephson junctions [21] due to the
relative phase of the solitons that has a kink shape with the topological phase
difference equal to 2p: Moreover, it was emphasized that a BJV can transform
from and to a dark soliton, due to the presence of a critical coupling at which the
two solitonic structures exchange their stability [22]. In addition to BJVs that can
be considered as domain-walls in the phase field, recently it is shown in [23] that a
similar linearly coupled system may also admit solutions whose density difference
forms a kink shape, i.e. the solutions are domain walls in the density field.

The study of Josephson tunneling in BECs considers the tunneling of the
Thomas-Fermi cloud, i.e. a continuation of the ground state. The tunneling
dynamics has been explained using a two-mode approximation [13, 15]. The
validity of the approximation has been shown in [24, 25]. To improve the appli-
cability regime of such an approximation, modified coupled-mode equations have
been presented in, e.g., [26–30].

It is important to note that in addition to the ground state, nonlinear excitations, such
as dark matter waves, can also be created in BECs. Dark soliton dynamics in BECs with
single well potentials has been studied theoretically (see reviews [31, 32]) and experi-
mentally [33–35, 37]. Interesting phenomena on the collective behavior of a quantum
degenerate bosonic gas, such as soliton oscillations [34–36] and frequency shifts due to
soliton collisions [37] were observed. The evolution of solitons is of particular interest as
the extent to which their behavior can be described in a particle picture is an open
question and merits further experimental and theoretical investigation. A combination of
soliton physics with the dynamics at weak links within double well potentials will shed
light on the collective behavior of excited Bose–Einstein condensates in non-trivial
potentials. In this paper, we present an analysis of the dynamics of dark matter waves in a
double well potential. Static properties of such a configuration have been recently
studied in [38, 39]. Here, we show that dark matter waves can also experience stable
quantum tunneling between the wells. This implies that localized excitations in higher
dimensions, such as vortices, may also experience Josephson tunneling. The (in)stability
is obtained using numerical Floquet analysis. The numerical calculations are necessary
as the stability of the observed tunneling is not immediately obvious. This is especially
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the case because dark solitons are higher-order excited states. The possibility that modes
with lower energy will be excited is not ruled out by a coupled-mode approximation.

The present paper is outlined as follows. In Sect. 2, we discuss the governing
equation used in the current study. We then solve the equation numerically, where we
obtain stable and unstable Josephson tunneling through a numerical path following
method. The stability analysis is performed through calculating the Floquet multipliers
of the solutions. In Sect. 3, we derive a coupled-mode approximation describing the
tunneling dynamics. Good agreement between the numerics and the approximation is
obtained and shown. We also discuss the failure of the coupled-mode approximation in
capturing unstable Josephson tunneling. Finally we conclude the work in Sect. 4.

2 Josephson Tunnelings

2.1 Mathematical Model

We consider the normalized nonlinear Schrödinger (NLS) equation modelling the
BECs (see, e.g., [40] for the scaling)

iwt þ wxx þ sjwj2w� VðxÞw ¼ 0; ð1Þ

where w is the bosonic field, and t and x is the time and position coordinate,
respectively. The parameter s ¼ �1 characterizes the attractive and repulsive
nonlinear interaction, respectively, and VðxÞ is the external double well potential,
which for simplicity is taken as

V ¼ 1
2
X2ðjxj � aÞ2; ð2Þ

with the parameters X and a controlling steepness and position of the two minima.
The total number of atoms N in the trap is conserved with

N ¼
Zþ1

�1

jwj2dx: ð3Þ

Throughout the present paper, we set s ¼ �1; i.e. we consider repulsive interac-
tions between particles.

For non-interacting particles ðs ¼ 0Þ in a single well potential ða ¼ 0Þ; the
governing equation (1) can be solved analytically to yield wn ¼ e�iEnt/nðxÞ; where
/n satisfies

/nþ1 ¼
Xffiffiffi

24
p x�

ffiffiffi
24
p

X
ox

� �
/n; n ¼ 0; 1; 2; . . .; ð4Þ

with
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/0 ¼ e�
X

2
ffiffi
2
p x2

;

and the chemical potential En is given by

En ¼
1
2

ffiffiffi
2
p
ð2nþ 1ÞX:

The excitations /n can be continued to nonzero s; which has been considered
in, e.g., [41–51] (see also [52] for discussions on stationary solutions of the NLS
equation with a multi-well potential that do not reduce to any of the eigenfunctions
of the linear Schrödinger problem). Similar numerical continuations for localized
modes in two-dimensional settings have been presented in, e.g., [53, 54]. The
existence and the stability analysis of continuations of /n in a double-well
potential has been discussed in [55], where it was shown that there is a symmetry
breaking of the corresponding solutions, i.e. a change of stability from a symmetric
to an asymmetric state. One typical manifestation of the instability is a periodic
transfer of atoms between the wells, i.e. Josephson tunneling.

As most of Josephson tunneling studied in BECs considers the tunneling of a
ground state cloud, which is a continuation of /0; here we consider in particular
the tunneling of dark solitons as continuations excited states /1.

2.2 Numerical Periodic Solutions

To look for time-periodic solutions describing Josephson tunneling, we seek
solutions that fulfills the relation wðx; TÞ ¼ wðx; 0Þ; with T being the period of the
Josephson oscillations. Such solutions posses double periodicity, i.e. one due to the
solitonic nature with a period 2p=E; where E is the chemical potential (intra-well
oscillations) and the other one caused by the Josephson effect (inter-well oscil-
lations). Consequently, we can express the solutions in terms of a Fourier series
multiplied by a factor related to the stationary character of dark solitons

wðx; tÞ ¼ expð�iEtÞ
X1

k¼�1
zkðxÞ expðikxtÞ; ð5Þ

where x ¼ 2p=T is the Josephson oscillation frequency. These solutions are
denoted as commensurate if the commensurability condition E ¼ ðq=pÞx ¼
ð2qpÞ=ðpTÞ is fulfilled, with fq; pg 2 N. In what follows, we fix p ¼ 1.

Commensurate solutions are consequently fixed points of the map wðx; 0Þ !
wðx; TÞ and can be found either by using shooting methods in real space or algebraic
methods in Fourier space. In order to do that, we will transform the problem into a
discrete one by means of a finite difference discretization with spatial step Dx ¼ 0:2
and apply the techniques developed for discrete breathers in Klein–Gordon lattices
[56, 57]. If a shooting method were used, a time step Dt ¼ 0:02 would be necessary.
As the considered oscillations herein have periods about 1,500 time units, this
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method would imply many integration steps. In addition to that, the lack of an
analytical Jacobian would also imply the necessity of the numerical determination of
this matrix. These facts suggest the suitability of the proposed Fourier space method,
which, apart from transforming the set of differential equations into an algebraic one,
provides an analytical expression for the Jacobian.

Truncating the Fourier series at km; i.e. the maximum value of jkj; which has
been chosen to be 9 in most of the calculations due to computational reasons,
Eq. (1) yields a set of nonlinear equations with the kth component of the
dynamical equation set given by

FkðxÞ � ðE � xkÞzk þ o2
xzk � VðxÞzk � s

Xkm

m¼�km

Xkm

n¼�km

zmznzk�mþn ¼ 0: ð6Þ

We then obtain the following expression for each component of the Jacobian

oFkðxÞ
oznðx0Þ

¼ ½E � xk � VðxÞ�dðx� x0Þ þ o2
xx

� �
dk;n

� sdðx� x0Þ
X

m

z�mzk�nþm þ zmðzk�mþn þ z�nþm�kÞ
� �

;
ð7Þ

where we have written zk � zkðxÞ in both equations.
Once a periodic solution, say Wðx; tÞ; is obtained, to study its (linear) orbital

stability one needs to analyze the time evolution of a small perturbation nðx; tÞ to
Wðx; tÞ. The equation satisfied to leading order by nðx; tÞ is

int þ nxx � sð2jWj2nþW2n�Þ � VðxÞn ¼ 0: ð8Þ

Then, the stability properties of commensurate solutions can be determined by
means of a Floquet analysis. It is performed by diagonalizing the monodromy
matrix M which is defined as

Reðnðx; TÞÞ
Imðnðx; TÞÞ

	 

¼M Reðnðx; 0ÞÞ

Imðnðx; 0ÞÞ

	 

: ð9Þ

The linear stability of the solutions requires that the monodromy eigenvalues (also
called Floquet multipliers) must be at the unit circle (see, e.g., [56, 58, 59] for
details). In order to get the monodromy with enough accuracy, the simulations
must be performed using a time step around Dt ¼ 0:001.

We have calculated commensurate solitons for X ¼ 0:1 and a ¼ 10 using the
method described above and analysed the stability of those solutions. Presented in
the top panels of Fig. 1 are two periodic solutions that we obtained in a double
well potential. The left and right panel respectively corresponds to Josephson
tunneling and a transition to macroscopic quantum self-trapping, similarly to the
dynamics of the ground state oscillations [13, 15].

In the middle panels of Fig. 1, we present the distribution of the Floquet
multipliers of the two solutions depicted in the top panels in the complex plane. It
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is worth noting that as there is a quartet of multipliers that do not lie on the unit
circle, one can conclude that the solution in the top right panel is unstable.
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Fig. 1 (Top) The first few oscillations of the atom density jwðx; tÞj2 for dark solitons in a double
well potential with X ¼ 0:1; a ¼ 10; and (left) x ¼ 0:00450 and (right) x ¼ 0:00520; which
respectively corresponds to N ¼ 0:0340 and N ¼ 0:7677: In both cases, the initial conditions are
obtained from a numerical continuation with q ¼ 47 (see the text). (Middle) Floquet multiplier
distributions corresponding to solutions in the top left and right panel, respectively. (Bottom)
Longer time evolutions of the top panels where one can see that the solution in the top right panel
is indeed unstable

588 H. Susanto and J. Cuevas



We show in the bottom panels of Fig. 1 a longer time evolution of the solutions
in the top panels, where one can see that the solution in the top right panel is
indeed unstable. The instability we reported here is a clear evidence that the
nonlinearity term in the governing equation (1) plays an important role, as all the
solutions would have been stable otherwise. A typical instability dynamics is a
repulsive interaction between the dark solitons in different wells so that they start
to oscillate about the minimum of the wells as shown in the bottom right panel of
Fig. 1. This is a typical dynamics due to the presence of complex eigenvalues, i.e.
oscillatory instabilities.

We have also obtained periodic solutions for various parameter values. In the top
left panel of Fig. 2 we show the dependence of the norm (number of atoms) N of
tunneling dark solitons when the inter-well oscillation frequency is varied. In the
panel, several representative values of q are considered. Note that the possible values
of q are not limited to those shown in the graph. As x is increased further, there is a
critical value above which solutions are unstable. Unstable solutions are indicated as
dashed lines in the top left panel. The solutions can also be continued for decreasing
frequencies x down to a critical value. Below this critical value, the only existing
solutions are non-oscillating ones. In the top right panel of Fig. 2 we show the
dependence of the growth rate (the logarithm of the maximum modulus of the
Floquet multipliers) with respect to x for q ¼ 47. We also present the growth rate of
Josephson tunneling for a fixed x and q and variable separation distance between the
two wells a in the bottom panels of the same figure, i.e. x ¼ 0:0049 and q ¼ 47. For
small a; the solutions tend to a non-oscillating one with one dark soliton in each well,
analogously to what occurs for small x and fixed a.

3 Coupled-Mode Approximations and Their Validity

To describe dark soliton dynamics reported in the previous section, we will readily
use a two-mode approximation derived in [27, 28]. Following [27, 28], we write

w ¼
ffiffiffiffi
N
p

b2ðtÞU2ðxÞ þ b3ðtÞU3ðxÞð Þ; U2;3 ¼
UþðxÞ � U�ðxÞffiffiffi

2
p ; ð10Þ

where U�ðxÞ is a continuation of /2;3 (4) for nonzero a satisfying

oxxU� þ b�U� � VðxÞU� þ sNU3
� ¼ 0; ð11Þ

with the constraint
Rþ1
�1 UjUkdx ¼ dj; k; i; j ¼ þ;�. Two examples of Uj; which

corresponds to the norm N in the Fig. 1 are presented in Fig. 3. We obtained UjðxÞ
numerically by solving (11) using a fixed point algorithm, i.e. in this case a
Newton–Raphson method.

Next, for simplicity we write bjðtÞ ¼ jbjðtÞjeihjðtÞ. Equations (3) and (10) imply

that jb2ðtÞj2 þ jb3ðtÞj2 ¼ 1. Defining

Josephson Tunneling of Excited States in a Double-Well Potential 589



zðtÞ ¼ jb2ðtÞj2 � jb3ðtÞj2; DhðtÞ ¼ h3ðtÞ � h2ðtÞ; ð12Þ

one can obtain the equations satisfied by z and Dh [27, 28]

dz

dt
¼ � oH

oDh
;

dDh
dt
¼ oH

oz
; ð13Þ

where

H ¼ 1
2

Az2 � B
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
cos Dhþ 1

2
Cð1� z2Þ cos 2Dh; ð14Þ

A ¼ 10cþ� � cþþ � c��
4

; B ¼ b� � bþ þ
cþþ � c��

2
; ð15Þ

C ¼ �2cþ� þ cþþ þ c��
4

; ð16Þ
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Fig. 2 The top left panel presents the dependence of the norm with respect to x for dark solitons
with a ¼ 10: Central panel shows the minimum transmission coefficient for those solutions.
Dashed lines indicate unstable solutions. Here, q sweeps the values between 40 and 50. The top
right panel shows the dependence of the growth rate with respect to x for q ¼ 47: Bottom panels
depict the norm and the growth mode of tunneling dark solitons with fixed x ¼ 0:0049 and
q ¼ 47 for varying a
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cjk ¼ �sN

Z1

�1

U2
j ðxÞU2

kðxÞdx; ð17Þ

with j; k ¼ þ;�. In the ðDh; zÞ-plane, Uþ and U� correspond to the equilibrium
point ð0; 0Þ and ð�p; 0Þ; respectively.

We plot the phase-portrait of (13) in Fig. 4 for the two values of N in Fig. 1. To
compare the two-mode approximation with the top panels of Fig. 1, we calculate
the variable z from the numerics of the full equation (1) as [27, 28]

z ¼
R 0
�1 jwðx; tÞj

2dx� N=2

NS
; S ¼

Z0

�1

UþU�dx

������

������;

where in the present case S � 0:5. As Dh can be calculated immediately, one can
compare the numerics and the approximation right away. Shown in Fig. 4 are the
comparisons, where satisfactory agreement is obtained. The bold trajectory in the
right panel is obtained from the top right panel of Fig. 1, i.e. only the first few
oscillations are used such that the instability has not developed yet.

The phase portrait in the left panel of Fig. 4 has two families of periodic
oscillations, i.e. one centred at Dh ¼ 0 and the other at �p. The latter is known as
p-oscillations [14]. The stable solution in the top left panel of Fig. 2 with q ¼ 50
and the same norm belongs to this family. As for the phase portrait in the right
panel of Fig. 4, one can also observe that there are two types of solutions, i.e.
Josephson oscillations and running states. The latter type is also referred to as
macroscopically quantum self-trapped states.

As for the instability of the solution in the top right panel that develops at a later
time, it is clearly beyond the validity of the two-mode approximation presented
herein. One would need a better ansatz for the approximation to capture the
stability of the periodic solutions. We conjecture that the invalidity of the
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Fig. 3 The second and third
collective modes of the
confining potential VðxÞ
(dash-dotted) for (solid) N ¼
0:034 and (dashed) N ¼
0:7677; with s ¼ �1
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approximation is caused by the assumption that the basis functions U2 and U3 are
thought to be stable (time-independent), which are not necessarily the case. Note
that the validity issue mentioned here is completely different from that in [27, 28].
In [27, 28], the issue is related to the fact that the approximation does not capture
the Josephson oscillation of the full equation directly from the beginning, which
typically occurs when jsNj � 1; while in our case jsNj\1 and the approximation
does capture the existence, but not the stability.

To analyse further the above conjecture, we have calculated the stability of the
bases U�. The linear stability of Uj is determined by solving for the eigenvalues k
and eigenvectors aðxÞ and bðxÞ of the eigenvalue problem

ka ¼ bj þ dxx � VðxÞ þ 2sNUj
2

� 

aþ sNUj

2b;

�kb ¼ bj þ dxx � VðxÞ þ 2sNUj
2

� 

bþ sNUj

2a;

obtained by the substitution of

wðx; tÞ ¼
ffiffiffiffi
N
p

UjðxÞ þ � aðxÞeikt þ b�ðxÞe�ik�t
� �h i

e�ibjt

into (1) and linearization in the formal small parameter �: As the eigenvalues are
generally complex, i.e. k ¼ kr þ iki; instability corresponds to ki 6¼ 0 due to the
Hamiltonian structure of the equation. The stability analysis of the bases U� as a
function the norm N is summarized in Fig. 5.

From our numerical analysis, U� becomes unstable at N � 0:056: At this point,
a pair of eigenvalues bifurcates from the zero eigenvalues into the imaginary axis,
i.e. an exponential instability. This change of stability is due to a symmetry-
breaking (pitchfork) bifurcation with an asymmetric solution, which is accurately
predicted by the two-mode approximation above (see, e.g., [38]). Note that the
equilibrium ðDh; zÞ ¼ ð�p; 0Þ in the left and right panel of Fig. 4 has different
stability. The stability does change at the critical norm above. The typical outcome
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Fig. 4 The phase-portraits of (13) for the two values of N in Fig. 1, i.e. (left) N ¼ 0:0340 and
(right) N ¼ 0:7677: Thick symbols correspond to the periodic solutions shown in the top panels of
Fig. 1
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of the instability is a stable time-periodic solution, which is in agreement with the
two-mode approximation.

When N is increased further, there is a critical norm N � 0:21 above which Uþ
becomes unstable. It is important to note that in this case the critical eigenvalue is
complex, i.e. the solution suffers from an oscillatory instability, as shown in the top
panel of Fig. 6 for N ¼ 0:3: From the middle panel, it can be seen that the unstable
mode creates out-of-phase oscillations of the dark soliton pairs in the wells.
Computing the atom imbalance zðtÞ and the phase-difference DhðtÞ between atoms
in the wells, interestingly we obtain that the unstable dynamics still yields the
equilibrium point ðDh; zÞ ¼ ð0; 0Þ: Another interesting observation is that super-
posing Uþ with U� may suppress the instability provided that the coefficient of U�
is sufficiently large. As shown in the bottom panel of Fig. 6, even a coefficient as
small as

ffiffiffiffiffiffiffi
0:1
p

� 0:32 already reduces the instability of Uþ: These may likely be
related to the numerical results in Fig. 2, where we still obtained stable periodic
solutions with norms slightly larger than N ¼ 0:3:

Next, we increased N further and observed that for the stability of U� there is a
pair of complex eigenvalues that bifurcates in the complex plane at N � 0:58: The
eigenvalue structure of the solution for N ¼ 0:7677 is shown in the top panel of
Fig. 7. Hence, in addition to an exponential instability, now U� also suffers from
an oscillatory instability. The typical dynamics of the state is presented in the
middle panel, where initially the exponential instability creates partial tunneling of
atoms from one well to the other followed by in-phase oscillations of the dark
soliton pairs. As opposed to stabilization of Uþ due to a superposition of U� when
it becomes unstable, in the present case we did not observe any instability sup-
pression. It may be because both Uþ and U� are already unstable due to complex
eigenvalues. This is also in agreement with the numerics in Fig. 2 where all the
numerically obtained periodic solutions are unstable above N � 0:58 due to
complex eigenvalues (see the middle, right panel of Fig. 1).
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4 Conclusion and Future Work

We have studied dynamics of excited states in a double well potential, where it has
been shown that such states can experience tunnelings between the wells.
Numerical stability analysis based on the full governing equation has been per-
formed to show that the time-periodic solutions can be stable. Through path fol-
lowing methods, unstable solutions were also obtained. The instability is because
of complex eigenvalues, i.e. oscillatory instability. A coupled-mode approximation
has been derived to explain the numerical results. The break-down of the
approximation has been discussed as well, where it was shown through a hand-
wavy argument that two-mode approximations are not able to capture instability
due to complex eigenvalues. Nevertheless, it was also shown trough numerical
simulations that an instability caused by a quartet of complex eigenvalues can be
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suppressed by Josephson tunneling. In that regard, it is interesting to mention that
the lifetime of purely black stationary solitons can be short due to quantum
depletion [60], as atoms tunnel in to fill up the notch at the soliton center. In a
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Fig. 8 (Top) The first two oscillations of the atom density jwðx; tÞj2 for a Thomas-Fermi cloud in
a double well potential with X ¼ 0:1; a ¼ 7:5; (left) q ¼ 10 and (right) q ¼ 13: In both cases, the
initial conditions are obtained from a numerical continuation with x ¼ 0:01: (Middle) Floquet
multiplier distributions corresponding to solutions in the top left and right panel, respectively.
(Bottom) Longer time evolutions of the top panels corresponding to 10 oscillation periods;
clearly, the unstable solution develops oscillations with a period different from the initial one
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double-well potential, because the soliton dip can effectively tunnel from one well
to the other and hence a periodic transfer of atoms in each well, Josephson tun-
neling may provide an alternative way to obtain a long-lived dark soliton by
suppressing the depletion-induced decay of the soliton.

A natural problem to follow the analysis reported herein is the existence and
stability of time-periodic solutions of the ground states (Thomas-Fermi cloud).
A two-mode approximation for this case has been derived and discussed in, e.g.,
[27, 28]. Using the approximation, periodic solutions should be stable. We have
performed preliminary computations presented in Fig. 8 where we also obtained
unstable periodic solutions due to multipliers leaving at 1, i.e. exponentially unstable.
Different from the dark soliton case, the instabilities here do not lead to the
destruction of the periodicity of the solutions, but to a change in the oscillation period
of the tunneling. Hence, again a coupled-mode approximation breaks down here.
Nevertheless, our analysis presented above cannot be used in this case as the bases,
which are continuations of /0 and /1 (see (4) and (11)), do not experience any
oscillatory instability [55]. This is an ongoing work and will be reported elsewhere.

Several other directions that currently we work on include, on the one hand, the
extension of the dark soliton tunneling to non-commensurate solutions using the
technique developed in [61], and, on the other hand, an analysis of Josephson
tunneling of excitations in polaritonic Bose–Einstein condensates [62] whose
description includes gain and damping terms in the Gross–Pitaevskii equation [63].
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