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Abstract We study the existence, stability, and dynamics of symmetric and
anti-symmetric states of quasi-one-dimensional polariton condensates in double-
well potentials, in the presence of nonresonant pumping and nonlinear damping.
Some prototypical features of the system, such as the bifurcation of asymmetric
solutions, are similar to the Hamiltonian analog of the double-well system
considered in the realm of atomic condensates. Nevertheless, there are also some
nontrivial differences including, e.g., the unstable nature of both the parent and the
daughter branch emerging in the relevant pitchfork bifurcation for slightly larger
values of atom numbers. Another interesting feature that does not appear in the
atomic condensate case is that the bifurcation for attractive interactions is slightly
sub-critical instead of supercritical. These conclusions of the bifurcation analysis
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are corroborated by direct numerical simulations examining the dynamics of the
system in the unstable regime.

1 Introduction

Over the past few years, a novel direction in the study of Bose–Einstein con-
densation has captured a considerable amount of attention. This concerns the
observation of exciton–polariton Bose–Einstein condensates (BECs) in semicon-
ductor microcavities [1–4]. A fundamental feature of these exciton–polariton
BECs is that, upon confinement, the excitons (bound pairs of electrons and holes)
couple strongly to the incident light creating the polariton quasi-particles [5, 6].
The resulting exciton–polariton BEC possesses a number of remarkable properties
that we briefly touch upon below.

The radiative lifetime of the polaritons is the shorter relaxation time scale of the
system being of the order of 1–10 ps [7]. On the other hand, the light mass of the
exciton–polaritons provides this system with a significantly higher condensation
temperature. The photonic component of the exciton–polaritons is responsible for
their short lifetime which, in turn, does not allow thermalization; instead, it pro-
duces a non-equilibrium condensate, wherein the presence of external pumping
from an exciton reservoir is critical towards a counter-balance of the polariton loss.
In such genuinely non-equilibrium condensates, numerous remarkable features
have been not only theoretically predicted but also experimentally established;
these include the flow without scattering (analog of the flow without friction) [8],
the existence of vortices [9] (see also Ref. [10] for vortex dipole dynamics and
Ref. [11] for observations thereof), the collective dynamics [12], as well as
remarkable applications such as spin switches [13] and light emitting diodes [14]
operating even near room temperatures.

Perhaps the most customary approach to modeling exciton–polariton BECs
involves the coupling of the evolution of the polaritons to that of the exciton
reservoir which enables their production (and which features diffusive spatial
dynamics of the excitons); this way, the model takes the form of two coupled
complex Ginzburg–Landau (cGL) equations describing the evolution of exciton
and photon wavefunctions [15–17]. Nevertheless, it has been proposed in Refs.
[18–20] that a single cGL equation for the macroscopically occupied polariton state
can also be used in a way consistent with experimental observations [21]. A similar
approach was followed in Ref. [22] where a BEC of magnon quasi-particles,
incorporating a source term rather than an amplification of the field, was shown to
be phenomenologically described by a system two nonlinearly coupled cGL-type
equations. In the context of the single cGL model for the polaritons, there exists a
localized (pumping) region of gain and a nonlinear saturating loss term, in addition
to all the standard terms (quantum pressure, external parabolic trapping and
repulsive interatomic interaction) that one encounters in atomic BECs [23–25].
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Furthermore, it should be pointed out that the prototypical setting where experi-
ments have been conducted is two-dimensional in nature. Yet, highly anisotropic
traps (similar to what has been done in atomic BECs [23–25]) can be envisioned
which reduce the effective dynamics to a quasi one-dimensional (1D) setting
[26–31]. Moreover, recent experimental advances have enabled the use of thin
microwires in order to guide the condensates along the direction of the wire [32].
In this setting, the recent analysis of Ref. [33] presented a number of striking
characteristics due to the interplay of gain and loss terms with the standard ones of
atomic BECs. Prominent examples included the destabilization of the nodeless state
of the system and the creation of stability inversions (where states with nodes would
be more robust), as well as the existence of bubble-like and sawtooth-like solutions
in the system.

A very interesting research direction in the physics of atomic and polariton
BECs concerns the dynamics of the condensates in a double-well potential. The
latter can be created in atomic BEC experiments through the combination of a
parabolic trap and a periodic (so-called optical lattice) potential generated through
the interference of laser beams illuminating the BEC [34]. Relevant experiments in
atomic BECs [35, 36] have paved the way towards the exploration of numerous
features such as tunneling and Josephson oscillations for small numbers of atoms
in the condensate, and macroscopic quantum self-trapped states, as well as sym-
metry-breaking effects for large atom numbers. On the other hand, double-well
potentials can also be created in polariton BEC experiments in microcavities by
applying stress [2, 37], by employing photolithographic techniques [26, 27], or
allowing natural formation during the sample growth [38]. Importantly, the latter
technique was used for the study of a ‘‘polariton Josephson junction’’ [38], in the
spirit of earlier studies on ‘‘bosonic Josephson junctions’’ [39] in the context of
atomic BECs. Importantly, a large volume of theoretical studies has accompanied
these developments, first in the context of atomic BECs, through investigations
related to finite-mode reductions and symmetry-breaking bifurcations [40–49],
quantum effects [50], and nonlinear variants of the double-well potential [51], and
more recently in the context of polariton condensates, especially as concerns
Josephson oscillations therein [52–55]. It should be mentioned in passing that
similar (spontaneous symmetry breaking) effects have been monitored in the realm
of nonlinear optics: in this context, formation of asymmetric states in dual-core
fibers [56–62], self-guided laser beams in Kerr media [63], and optically-induced
dual-core waveguiding structures in photorefractive crystals [64] have been
reported.

It is the aim of the present work to combine these two themes, namely the focus
on the exciton–polariton BEC with pumping and loss and the fundamental interest
in the understanding of double-well trapping potentials in a spirit similar to the
proposal of Ref. [15]. In particular, we will consider the single-component model
of Refs. [18–20] combined with a double-well potential in a quasi-1D (e.g.,
microwire) setting. We will attempt a systematic (Galerkin) finite-dimensional
reduction of the system via projection to the two principal eigenstates of the
potential, and will derive a damped-driven system of ordinary differential
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equations (ODEs) that have been shown in the Hamiltonian case to capture the
essence of the statics [65] and dynamics [66] of double-well potentials. We will
then examine the bifurcation structure of the resulting ODEs and compare it to that
of the original partial differential equation (PDE) model. This already provides us
with a number of interesting features that distinguish this system from its Ham-
iltonian analog. For instance, in the case of attractive interatomic interactions
(which is studied together with that of repulsive interactions) the relevant sym-
metry-breaking pitchfork bifurcation is subcritical instead of supercritical as in the
Hamiltonian case. Furthermore, both branches that emerge from the pitchfork
bifurcations, the stable asymmetric one and the (now) unstable ‘‘parent’’ branch,
both appear to become destabilized in this polariton BEC setting for slightly larger
nonlinearities, posing the natural question of what is the stable dynamics for larger
values of the nonlinearity. These questions will in part be addressed via direct
numerical simulations.

Our presentation will be structured as follows. First, in Sect. 2, we will present
the model and its theoretical study via the Galerkin analysis. In Sect. 3, we will
study the model numerically and compare the results of the numerical bifurcation
analysis with the prediction of the Galerkin approximation. We will also com-
plement these results with direct numerical simulations of the original model.
Finally, in Sect. 4 we summarize our results and present our conclusions.

2 Model Setup and Analytical Predictions

In our analysis below, we adopt the model of Refs. [18–20]. It has been argued
in these works that the original exciton–polariton system given by a set of two
coupled equations can be effectively reduced to a single cGL equation with a
nonlinear saturating loss term. This reduction can be used when the reservoir
mean-field potential is negligible and the spot size is large compared with the
condensate size (i.e., if we can consider that the spot width is the same as the
spatial extent of the system). In particular, the amplification of the existing field
introduces a gain and hence acts as a generator of polaritons. Then the loss term
saturates this gain beyond a certain threshold. These two terms are analogous to
the pumping of polaritons from the excitons and to the natural decay of the
polaritons. This reduced model can be expressed in dimensionless form as
follows:

iotu ¼ �o2
xuþ sjuj2uþ VðxÞu� luþ i vðxÞ � rjuj2

h i
u: ð1Þ

The above model is actually a complex Ginzburg–Landau equation [67] for the
complex order parameter uðx; tÞ; which is assumed to evolve in the presence of
the effectively-1D double-well potential VðxÞ: Equation (1) can be applied to
both the contexts of atomic and polariton BECs: in the first case, the two last
terms in the right-hand side of Eq. (1) are absent, and the model—known as the
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Gross-Pitaevskii equation [23–25]—describes the evolution of the macroscopic
wavefunction for the cold atoms and l is the chemical potential; in the second
case, uðx; tÞ denotes the polariton wavefunction, and the last two terms in the
right-hand side are included in the model. More specifically, in the context of
polariton condensates, Eq. (1) incorporates (a) the spatially dependent gain term
of the form

vðxÞ ¼ aHðxm � jxjÞ; ð2Þ

where H is the step function generating a symmetric pumping spot of ‘‘radius’’ xm

and strength a for the gain, and (b) a nonlinear saturation loss term, characterized by
its strength r:As concerns the parameter s � �1; it sets the type of nonlinearity (i.e.,
the type of interactions between atoms or polaritons): for s ¼ þ1 the nonlinearity is
defocusing (i.e., the interactions are repulsive), while for s ¼ �1 the nonlinearity is
focusing (i.e., the interactions are attractive). In the context of atomic BECs, the
value of s depends on the atom species (e.g., s ¼ þ1 for 87Rb or 23Na;while s ¼ �1
for 7Li or 85Rb atoms). On the other hand, in the context of polariton condensates, the
sign of the effective mass of polaritons [i.e., the sign of the first term in the right-hand
side of Eq. (1)] may become either positive or negative, depending on the values of
transverse momentum: in fact, the transition from positive to negative mass is
associated with the inflection point of the energy-momentum diagram [68, 69]. Here,
we will consider both cases of s ¼ �1 to take into regard that the effective polariton
mass may be positive or negative, respectively. We finally note that the relevant
physical time and space scales, as well as physically relevant parameter values
associated with Eq. (1), can be found in Ref. [18].

In what follows, we will use the Galerkin (few mode truncation) approach of
Ref. [49]. A similar approach, in the absence of external confining potential,
has been used in Ref. [70] for a polariton laser. We start by considering the
corresponding linear eigenproblem which reads:

Hu � �o2
xuþ VðxÞu ¼ xu; ð3Þ

whose spectrum consists of a ground state, u0ðxÞ; and excited states, uiðxÞ (with
i� 1). Then, in the weakly nonlinear regime, we consider a superposition of the
two lowest linear eigenmodes,

uðx; tÞ ¼ c0ðtÞu0ðxÞ þ c1ðtÞu1ðxÞ; ð4Þ

where c0;1ðtÞ are unknown time-dependent complex prefactors; obviously, the
above ansatz is relevant for values of the chemical potential l such that higher
order modes can be safely ignored. Substituting this ansatz into Eq. (1) we obtain:

i _c0u0 þ _c1u1ð Þ ¼ ðx0 � lÞu0c0 þ ðx1 � lÞu1c1 þ sjuj2 c0u0 þ c1u1ð Þ
þ i vðxÞ � rjuj2
h i

c0u0 þ c1u1ð Þ; ð5Þ
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where the juj2 has not been expanded only for reasons of compactness but should
actually be thought as expanded according to Eq. (4). Next, projecting on u0 and
u1 (i.e., multiplying the above equation by u0 and u1 and integrating over x), and
using the orthogonality of the states ui; we respectively derive the following
equations:

i _c0 ¼ ðx0�lþ ia0Þc0

þðs� irÞ A0jc0j2c0þ c2
0c�1þ 2jc0j2c1

� �
C0þ 2jc1j2c0þ c2

1c�0

� �
Bþjc1j2c1C1

n o
;
ð6Þ

and

i _c1 ¼ ðx1�lþ ia1Þc1

þðs� irÞ C0jc0j2c0þ c2
0c�1þ 2jc0j2c1

� �
Bþ 2jc1j2c0þ c2

1c�0

� �
C1þjc1j2c1A1

n o
:

ð7Þ

In the above equations, overdots denote time derivatives, the involved constants
(depending on the eigenbasis fuig) take the values A0 ¼

R
u4

0dx; A1 ¼
R

u4
1dx;

B ¼
R

u2
0u2

1dx; C0 ¼
R

u1u3
0dx; and C1 ¼

R
u0u3

1dx; while the effective gain coef-
ficients read: a0 ¼

R
vðxÞu2

0dx and a1 ¼
R

vðxÞu2
1dx: We now use amplitude and

phase variables for the time-dependent prefactors, i.e., ci ¼ qie
i/i (with the

amplitudes qi and phases /i being real functions), to derive a set of four equations
for the unknown functions q0;1 and /0;1: Introducing the relative phase of the first
two modes as u � /1 � /0; the above mentioned set of equations takes the fol-
lowing form:

_q0 ¼ a0q0 � r A0q
3
0 þ 2Bq2

1q0

� �
þ s C1q

3
1 þ C0q

2
0q1

� �
sin u

þ sBq2
1q0 sin 2u� r C1q

3
1 þ 3C0q

2
0q1

� �
cos u� rBq2

1q0 cos 2u;
ð8Þ

_/0 ¼ � ðx0 � lÞ � s A0q
2
0 þ 2Bq2

1

� �
� r C0q0q1 þ C1q

3
1=q0

� �
sin u

� rBq2
1 sin 2u� s 3C0q0q1 þ C1q

3
1=q0

� �
cos u� sBq2

1 cos 2u;
ð9Þ

_q1 ¼ a1q1 � r A1q
3
1 þ 2Bq2

0q1

� �
� s C0q

3
0 þ C1q

2
1q0

� �
sin u

� sBq2
0q1 sin 2u� r C0q

3
0 þ 3C1q

2
1q0

� �
cos u� rBq2

0q1 cos 2u;
ð10Þ

and

_/1 ¼ � ðx1 � lÞ � s A1q
2
1 þ 2Bq2

0

� �
þ r C1q1q0 þ C0q

3
0=q1

� �
sin u

þ rBq2
0 sin 2u� s 3C1q1q0 þ C0q

3
0=q1

� �
cos u� sBq2

0 cos 2u:
ð11Þ

Subtracting Eq. (9) from Eq. (11), we can readily obtain an equation for u;
namely:
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_u ¼ � Dx� s A1q
2
1 � A0q

2
0

� �
� sB 2þ cos 2u½ � q2

0 � q2
1

� �

� s
cos u
q0q1

C0q
2
0ðq2

0 � 3q2
1Þ þ C1q

2
1ð3q2

0 � q2
1Þ

� �

þ r
sin u
q0q1

C0q
2
0ðq2

0 þ q2
1Þ þ C1q

2
1ðq2

0 þ q2
1Þ

� �
þ rB sin 2uðq2

0 þ q2
1Þ;

ð12Þ

where Dx � x1 � x2: This way, we have arrived to a system of three equations
[cf. Eqs. (8), (10) and (12)] for the unknown functions q0;1 and u: These equations
are subject to an additional constraint stemming from the balance condition

dN=dt ¼ 0; where N �
Rþ1
�1 juj

2dx is the number of polaritons (mathematically
the squared L2 norm). The evolution of the latter, can readily be found by mul-
tiplying Eq. (1) by u�; the complex conjugate of Eq. (1) by u; and then adding and
integrating the resulting equations. It is straightforward to find that the condition
for equilibrium is:

Z þ1
�1

vðxÞ � rjuj2
� �

juj2dx ¼ 0: ð13Þ

Substituting Eq. (4) into Eq. (13), also using the polar decomposition for ciðtÞ
[and assuming a definite—even in our considerations—parity for the function
vðxÞ], we find that the balance condition (13) takes the form:

a0q
2
0 þ a1q

2
1

� �
� r A0q

4
0 þ q4

1A1 þ 4q2
0q

2
1B

� �
� 4r q3

0q1C0 þ q3
1q0C1

� �
cos u

� 2rq2
0q

2
1B cos 2u ¼ 0;

ð14Þ

which essentially fixes q1 once q0 and u are found and thus reducing the effective
number of degrees of freedom for our approximations to only two ðq0 and uÞ:

Below, we will consider the case of a symmetric double-well potential, for
which C1 ¼ C0 ¼ 0: In this case, Eqs. (8), (10) and (12) are reduced to the fol-
lowing simpler form,

_q0 ¼ a0q0 � r A0q
3
0 þ 2Bq2

1q0

� �
þ sBq2

1q0 sin 2u� rBq2
1q0 cos 2u; ð15Þ

_q1 ¼ a1q1 � r A1q
3
1 þ 2Bq2

0q1

� �
� sBq2

0q1 sin 2u� rBq2
0q1 cos 2u; ð16Þ

_u ¼ �Dx� s A1q
2
1 � A0q

2
0

� �
� sB 2þ cos 2u½ � q2

0 � q2
1

� �
þ rB sin 2uðq2

0 þ q2
1Þ;
ð17Þ

while the equilibrium condition is accordingly simplified as:

a0q
2
0 þ a1q

2
1

� �
� r A0q

4
0 þ q4

1A1 þ 4q2
0q

2
1B

� �
� 2rq2

0q
2
1B cos 2u ¼ 0: ð18Þ
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We can now turn to the study of stationary solutions (i.e., _q0 ¼ _q1 ¼ _u ¼ 0)
resulting from the Galerkin truncation analysis. Particularly, from Eq. (15) we
obtain two possible solutions:

ðiÞ q0 ¼ 0;
ðiiÞ a0 � r A0q2

0 þ 2Bq2
1

� �
þ sBq2

1 sin 2u� rBq2
1 cos 2u ¼ 0;

�
ð19Þ

while from Eq. (16) we obtain:

ðiÞ q1 ¼ 0
ðiiÞ a1 � r A1q2

1 þ 2Bq2
0

� �
� sBq2

0 sin 2u� rBq2
0 cos 2u ¼ 0:

�
ð20Þ

Next, multiplying the nontrivial equilibria of Eq. (19) by q2
0; the one from

Eq. (20) by q2
1; and adding the resulting equations, we obtain:

cos 2u ¼
ða0q2

0 þ a1q2
1Þ � r A0q4

0 þ A1q4
1 þ 4Bq2

0q
2
1

� �
2rBq2

0q
2
1

; ð21Þ

while subtracting Eq. (20) from Eq. (19) yields:

r A1q
4
1 � A0q

4
0 þ 2Bðq2

0 � q2
1Þ þ Bðq2

0 � q2
1Þ cos 2u

� �
þ sBðq2

0 þ q2
1Þ sin 2u

þ ða0 � a1Þ ¼ 0:

ð22Þ

Combining now Eq. (22) with Eq. (17) we finally obtain the result:

ðq2
0 þ q2

1Þ sin 2u ¼ rDx� sða0 � a1Þ
Bðr2 þ s2Þ : ð23Þ

Let us now focus again on Eqs. (15) and (16): it is clear that if Eq. (16) is
satisfied for q1 ¼ 0 then q2

0 ¼ a0
rA0
; and if Eq. (15) is satisfied with q0 ¼ 0 then

q2
1 ¼ a1

rA1
: Aside from these trivial symmetric and anti-symmetric solutions, past

the critical point for the symmetry breaking bifurcation, an asymmetric solution is
expected to exist which possesses non-vanishing q0 and q1 (as well as a non-zero
relative phase between them), which can be computed from Eq. (21). It is antic-
ipated that the presence of loss and gain will not (generically) modify the nature of
the bifurcations in comparison to the Hamiltonian case [49]. Namely, an asym-
metric solution will bifurcate from the symmetric one in the focusing nonlinearity
case of s ¼ �1; due to a non-vanishing contribution of the anti-symmetric part in
the solution, while on the contrary, an asymmetric mode will emanate from the
anti-symmetric one in the defocusing nonlinearity setting of s ¼ 1 (due to a
symmetric contribution within the solution). These results are detailed for a par-
ticular case example potential in what follows and compared to full numerical
results.
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3 Numerical Results

In our theoretical approximations, the double-well potential is constructed by
placing a localized barrier at the center of the parabolic trap potential of strength X:
Particularly, the double-well potential is assumed to be of the form:

VðxÞ ¼ 1
2

X2x2 þ V0sech
x

w

� �
; ð24Þ

where w is the width of the barrier and V0 its height. The results presented below are
for the potential parameters X2 ¼ 0:1; V0 ¼ 5; and w ¼ 0:2; we have checked that
other parameter values lead to qualitatively similar results. For the gain we consider
a strength a ¼ 0:2 and a spot size of xm ¼ 2:0: The damping parameter r is used to
vary the number of atoms, N; in order to do the continuation. For the above double-
well potential, the values of the linear eigen-energies are x0 ¼ 0:515729 and x1 ¼
0:677697: The potential setting under consideration is depicted in Fig. 1.

We have performed a continuation of symmetric, anti-symmetric and asym-
metric states in both cases of repulsive and attractive interactions. The continua-
tions have been performed by increasing the damping parameter r; which is
tantamount to decreasing the norm or chemical potential. It is important to note
that the chemical potential is no longer a free parameter in the present setting in
sharp contrast to what is the case in the Hamiltonian regime of atomic BECs (see
also the discussion of Refs. [18, 33]). Similar results can be obtained by decreasing
the pumping parameter a: However, a crucial realization that emerges from con-
sidering variations of the different parameters is that the spot size xm must be
chosen in a very limited range in order for the three above mentioned nonlinear
modes to co-exist and be potentially stable; outside this range, instabilities lead to

−15 −10 −5 0 5 10 15
0

1

2
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4
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10

x

V
(x

)

Fig. 1 The parabolic
trapping potential and the
localized barrier creating
the double-well potential
configuration. The
parameter values used are:
X2 ¼ 0:1; w ¼ 0:2; and
V0 ¼ 5; the shaded area
corresponds to the region
where the pumping acts, i.e.,
jxj\xm ¼ 2 (Color online)
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breathing multi-bump coherent structures. In what follows, the values of xm ¼ 2
and a ¼ 0:2 have been used unless explicitly indicated otherwise.

3.1 Repulsive Case

We start by considering the case of the repulsive interaction with s ¼ þ1 (and vary r
as mentioned above). The family of symmetric solutions is found to be always stable.
As expected, on the other hand, and in agreement to our expectation from the realm of
atomic BECs, the anti-symmetric solutions are exponentially unstable for small r;
which is tantamount to large polariton population numbers N: They become stable
after the symmetry-breaking pitchfork bifurcation occurring at r ¼ 1:045 (i.e., for
l\lcr ¼ 0:7574 and for N\Ncr ¼ 0:5333). The asymmetric branch that emerges
through this bifurcation is stable for l\0:7603 and N\0:5509; i.e., for a narrow
parametric interval past the bifurcation critical point. However, past this secondary
critical point, the asymmetric solutions are prone towards an oscillatory instability
emerging through a Hopf bifurcation (the critical loss strength in this case is
r ¼ 0:989). The relevant bifurcation diagrams are presented in Fig. 2, which shows
the dependence of l on r; as well as the dependence of N on l (note that the latter
form of the bifurcation diagram is more commonly used in relevant studies).
The latter graph also contains the results of the theoretical analysis for the symmetric
branch of Eq. (20) and for the anti-symmetric one of Eq. (19), as well as for the
asymmetric branch which is theoretically predicted for the parameters of our double-
well potential to bifurcate from the anti-symmetric solution for l [ 0:7722 and
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Fig. 2 Bifurcation diagrams for the symmetric, anti-symmetric and asymmetric branches for
defocusing (repulsive) nonlinearity ðs ¼ 1Þ: Left Dependence of the chemical potential on the
damping parameter. Right Dependence of the (normalized) number of polaritons on the chemical
potential. Unstable solutions are depicted by dashed lines on the left panel. On the right solid
lines display numerical results obtained by a nonlinear (Newton-Raphson) solver of the steady
state equations of the model of Eq. (1), while dashed lines display analytical results of our
Galerkin approach. The linear modes are located at l ¼ 0:5157 and 0:6667 (Color online)
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N [ 0:6661: As can be seen (also from Fig. 2), there is good agreement between
theoretical predictions and numerical findings.

Some case examples of solution profiles for the different branches, together
with the results of their corresponding linear stability analysis as performed by
means of the Bogolyubov-de Gennes (BdG) ansatz [23–25] are shown in Figs. 3
and 4. The BdG analysis is represented by the spectral plane of the linearization
eigenfrequencies x ¼ ReðxÞ þ iImðxÞ: Contrary to what is the case in the
Hamiltonian setting of Ref. [49] (where the spectrum is chiefly on the imaginary
axis), here the spectrum contains predominantly decaying modes with ImðxÞ\0:
For the stable symmetric ground state in Fig. 3, all modes are decaying except for
the symmetry mode associated with x ¼ 0; while for the unstable anti-symmetric
mode of the bottom panel the eigenfrequency associated with the growth is purely
imaginary with ImðxÞ[ 0: On the other hand, for the asymmetric modes of
Fig. 4, it is evident that shortly past the critical point for their emergence, a
genuine (now that the system is dissipative, in nature) Hopf bifurcation arises
through the crossing of a complex conjugate pair through the axis of ImðxÞ ¼ 0:
Additional Hopf bifurcations happen for smaller values of r (larger values of N), a
case example of which is evident in the bottom panel of Fig. 4. The dependence of
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Fig. 3 Left Real and imaginary part of the wavefunction profile for a symmetric (top) and anti-
symmetric (bottom) solution. Right Their corresponding stability eigenvalues. In all cases r ¼ 1
and the interactions are repulsive ðs ¼ þ1Þ (Color online)
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the imaginary part of the relevant eigenvalues for the anti-symmetric and asym-
metric solutions with respect to r is shown in Fig. 5, illustrating, respectively, the
relevant pitchfork (left panel) and multiple Hopf bifurcations (right panel). Nat-
urally, the Hopf bifurcation of the asymmetric branch is anticipated to give rise to
a limit cycle attractor within the dynamics [the relevant solution is expected to be
periodic in the squared modulus of the wavefunction, hence quasi-periodic in the
original field uðx; tÞ].

Two examples of the dynamics of unstable anti-symmetric solutions are illus-
trated in Fig. 6. It is observed that the unstable solutions generically tend to the
stable attractors. However, interestingly, in the r ¼ 1 case, the attractor of rele-
vance consists of an asymmetric steady state, while in the r ¼ 0:8 case it consists
of a symmetric one (the ground state of the system). The symmetry and asymmetry

of the configurations can be easily seen from the time series of the densities juj2�
and juj2þ measured, respectively, at the bottom of the left and right wells. These
time series are depicted in the lower panels of the figure. The relevance of the
asymmetric attractor, especially for larger values of N (smaller values of r; where
the only stable steady state is the symmetric one) is confirmed by the simulation
shown in the left panel of Fig. 7, where the dynamics of an unstable asymmetric
solution is traced, leading indeed to the same attractor. The right panel of Fig. 7
shows the evolution of a perturbed asymmetric state close to the Hopf bifurcation;
in that case, it is observed that the soliton relaxes to a quasi-periodic asymmetric
solution. [Recall that these solutions have a quasi-periodic evolution for the
wavefunction (due to the periodic evolution of the phase through e�ilt) but the
evolution in density is periodic as the panels show]. We have observed that
perturbations of the asymmetric solution lead to quasi-periodic dynamics for
r 2 ½0:970; 0:990�:
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3.2 Attractive Case

In the case of attractive interactions ðs ¼ �1Þ; the scenario is similar in nature, except
for the origin of the symmetry breaking bifurcation. More specifically, now, the
asymmetric solution branch, which stabilizes at r ¼ 0:923 ðl ¼ 0:4182 and N ¼
0:7199Þ; bifurcates from the symmetric solutions branch at r ¼ 1:118 ðl ¼
0:4101 and N ¼ 0:7741Þ: Figures 8 and 11 are the equivalent to Figs. 2 and 5,
respectively, but for s ¼ �1: Nevertheless, we observe that both the dependence of
the chemical potential l on the nonlinear saturation parameter r and that of N on l is,
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in fact, non-monotonic for this example in the case of the bifurcating asymmetric
branch. This clearly indicates (see the right panel of Fig. 8) that the relevant bifur-
cation is subcritical
(as the chemical potential l is decreased, which is the natural direction of variation
off of the linear limit). This is contrary to the corresponding supercritical expectation
of its Hamiltonian analog [49, 65]. It should be noticed, however, that other examples
where such subcritical bifurcations have been previously reported in Refs. [71, 72]
although in neither case was the nonlinearity purely cubic as was the case here (and
they did not contain driving/damping effects). Importantly, it should also be pointed
out that the analytical prediction of the Galerkin approach suggests a supercritical
scenario for l\0:4247 and N [ 0:6590: Despite the inability of the approximation
to capture the short subcritical segment of the bifurcating branch, we nevertheless see
that the Galerkin method is a useful tool for obtaining an estimate of the relevant
critical point.

An additional feature worth pointing out concerns the nature of the instabilities
of the different branches as detailed in Figs. 9 and 10. While the symmetric branch
becomes unstable at the relevant critical point by developing an imaginary
eigenfrequency with ImðxÞ[ 0 (the rest of the spectrum has ImðxÞ\0), the anti-
symmetric state remains dynamically robust. On the other hand, the asymmetric
branch emerges as stable at the critical point of the symmetry breaking but shortly
thereafter (for r\0:923), it becomes subject to a Hopf bifurcation through the
crossing of the axis with ImðxÞ ¼ 0 of a complex eigenvalue pair. In fact, for
r\0:74; a secondary Hopf bifurcation has occurred and is mirrored in the two
complex pairs with ImðxÞ[ 0 shown in Fig. 10. This phenomenology is enforced
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Fig. 7 Top Evolution of a perturbed asymmetric soliton with r ¼ 0:8 (left) and r ¼ 0:98 (right)
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state attractor, while in the latter case, it relaxes to a non-stationary (quasi-periodic) solution.
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by Fig. 11 which illustrates the dependence of the relevant stability eigenvalues
on the nonlinear loss parameter r (see the right panel for the sequence of Hopf
bifurcations, while the left panel highlights the symmetry-breaking induced
crossing of a single eigenfrequency pair for the symmetric branch). As in the
repulsive case, the Hopf bifurcation of the asymmetric branch is anticipated to give
rise to a limit cycle attractor within the dynamics.

The dynamics of Figs. 12 and 13 naturally reflects the above conclusions. In
particular, the evolution of the symmetric state in the double-well potential of the
left panel of Fig. 12 gives rise to the asymmetric state as the latter is stable and
indeed an attractor for the value of r ¼ 1: The right panel of the figure displays the
evolution of a perturbed symmetric solution tending to an anti-symmetric one; in
that case, the asymmetric solution is unstable and no longer a dynamical attractor.

On the other hand, Fig. 13 shows different case examples of the (unstable via the
Hopf) asymmetric branch for different values of r: In those cases, the asymmetric
branch is no longer a stable stationary state and as a result the dynamics becomes
periodic in the modulus (quasi-periodic in the original field) for r 2 ½0:74; 0:92�: It
is interesting to follow the changes in the dynamics for these periodic states as r is
decreased below the bifurcating point from the asymmetric branch. In particular,
close to bifurcation point, the periodic evolution remains proximal to the state from
which it emanates, namely the asymmetric state as it can be seen in the left panels of
Fig. 13. However, as r is decreased further from the bifurcation point, the insta-
bility of the asymmetric state is stronger and the departure from the asymmetric
solution is more significant. In particular, it is interesting to notice that for smaller
values of r; the solution tends to display strong oscillations of the densities
resembling the symmetric tunneling of matter from one well to the other. An
example of this evolution for r ¼ 0:8 is depicted in the right panels of Fig. 13
where it is evident that the oscillations in the two wells become similar to each other

0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.40.5 1 1.5

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

σ

μ

asym
metric

anti−symm
etric

symmetric

0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

μ

N

sym
m
etric

asymmetric

anti−sym
m
etric

Fig. 8 Bifurcation diagrams for the symmetric, anti-symmetric and asymmetric branches for
focusing (attractive) nonlinearity ðs ¼ �1Þ: Left Dependence of the chemical potential on the
damping parameter. Right Dependence of the (normalized) number of polaritons on the chemical
potential. Unstable solutions are depicted by dashed lines on the left panel. On the right panel
solid lines display numerical (Newton-Raphson) results, while dashed lines display analytical
(Galerkin) results (Color online)

Symmetry-Breaking Effects for Polariton Condensates in Double-Well Potentials 523



but with a phase shift between them, leading to an effective re-symmetrization of
the dynamics.

It is also interesting to highlight here the difference between the repulsive case
of Figs. 6 and 7 and the attractive case of Figs. 12 and 13. In the former case,
when the emerging asymmetric branch is unstable the dynamics typically is found
to lead to the stable ground state of the system (the symmetric one). On the other
hand, for the attractive case, when both the symmetric and the asymmetric branch
are destabilized, the dynamics does not resort to the excited (yet stable) anti-
symmetric state. Instead, it leads to periodic oscillations in the density between the
two wells.

Finally, we have considered the effect of varying the spot size fixing r ¼ 1: In
the repulsive case, the symmetric branch is stable for xm 2 ½0:9; 5:7�; out of this
range, the instabilities are caused by a Hopf bifurcation cascade and develop into
non-stationary multi-dark soliton waveforms, similar to the states that were
previously reported in Ref. [33] (but for a purely parabolic trap). The anti-
symmetric branch, which is unstable for every xm (for this value of r), experiences a
Hopf bifurcation cascade for xm� 2:0 and xm� 5:3: The instabilities for xm 2
ð2:0; 5:3Þ are the exponential ones previously explored. However, considering
higher values of r; a stability range appears which is enlarged for growing r:
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Fig. 9 Left Real and imaginary part of the wavefunction profile for a symmetric (top) and anti-
symmetric (bottom) solution. Right Their corresponding stability eigenvalues. In all cases r ¼ 1
and the nonlinearity is attractive ðs ¼ �1Þ (Color online)
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A similar effect is observed for the asymmetric branch, i.e., there is a small stability
interval xm 2 ½1:9; 2:0� that is enlarged when r is decreased. Outside this range, the
branch experiences Hopf bifurcation cascades.
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Fig. 10 Left Real and imaginary part of the wavefunction profile for an asymmetric solution with
r ¼ 1 (top) and r ¼ 0:7 (bottom). Right Their corresponding stability eigenvalues. Notice the
Hopf bifurcations and the associated oscillatory instabilities through two complex pairs which
have occurred in the latter case. Here, the nonlinearity is attractive ðs ¼ �1Þ (Color online)
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The above mentioned scenario is almost equivalent for the attractive case,
except that the symmetric and anti-symmetric branches are interchanged. In that
case, the anti-symmetric branch is stable for xm 2 ½2:0; 4:8�; the symmetric branch
is now stable for xm 2 ½1:0; 1:9�; starting the Hopf cascade at xm ¼ 4:5: The
asymmetric branch is stable for xm 2 ½1:0; 2:0�; while being oscillatorily unstable
for other values of xm:
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4 Conclusions and Future Challenges

In the present work, we studied the existence of solutions, their spectral stability and
nonlinear dynamics for the case of a polariton condensate confined in a quasi-1D
double well potential. Motivated by recent developments for the study of polaritons in
such settings [26–32, 52–55], and by the work of Ref. [15] which proposed a two-well
model, we presented a systematic Galerkin analysis for the model with the gain over a
localized spot and nonlinear saturation loss formulated in Refs. [18–20]. It was theo-
retically predicted that nonlinear states emanate from the corresponding linear ones of
the potential and that bifurcations are expected to arise, similarly to the Hamiltonian
analog of this setting studied earlier in the context of atomic BECs. Such symmetry
breaking pitchfork events emerge from the anti-symmetric, first excited state in the
case of the repulsive interactions, while they arise from the symmetric ground state
branch in the case of attractive ones. Despite the similarities with the atomic BEC case,
nontrivial differences exist as well. One of them concerns the nature of the bifurcation,
which in the attractive case was found to be weakly subcritical (instead of supercritical)
upon decrease of the chemical potential. Importantly also, the resulting asymmetric
branches aside from narrow intervals of stability are generically found to be unstable
due to genuine Hopf bifurcations, which, in turn, give rise to periodic orbits (in the
density). While in the repulsive case, the dynamics of anti-symmetric and asymmetric
branches is found to be attracted to the ground state when both of them are unstable, the
periodic orbits are essential to the evolution in the case of attractive interactions as they
seem to constitute the robust dynamical attractor.

This is merely the first step in the examination of the similarities (but also the
differences) of the polariton BECs and their atomic counterparts within a setting
that contains the interplay of a double-well potential and nonlinear interactions.
Yet, our study paves the way for a number of potential future avenues. On the one
hand, one can consider the more detailed model of Refs. [15–17] and examine
whether the inclusion of the diffusive dynamics of the exciton population induces
any qualitative differences in the features reported herein. On the other hand, and
bearing in mind the predominantly two-dimensional nature of the polariton
dynamics, one can envision generalizations of the potential considered herein in a
2D realm. Relevant possibilities may include not only the straightforward gener-
alization of a double well encompassing two quasi-one-dimensional tracks, but
also that of a genuinely two-dimensional four well potential that has recently been
examined in detail in atomic BECs [73]. Even in the context of the present model,
there are further possibilities to explore, including the systematic investigation of
the emergent periodic orbits and their Floquet spectral stability analysis. Such
studies are currently in progress and will be reported in future publications.
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