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Abstract We discuss the existence of breathers and lower bounds on their power, in
nonlinear Schrödinger lattices with nonlinear hopping. Our methods extend from a
simple variational approach to fixed-point arguments, deriving lower bounds for the
power which can serve as a threshold for the existence of breather solutions. Qualita-
tively, the theoretical results justify non-existence of breathers below the prescribed
lower bounds of the power which depend on the dimension, the parameters of the
lattice as well as of the frequency of breathers. In the case of supercritical power non-
linearities we investigate the interplay of these estimates with the optimal constant
of the discrete interpolation inequality. Improvements of the general estimates, tak-
ing into account the localization of the true breather solutions are derived. Numerical
studies in the one-dimensional lattice corroborate the theoretical bounds and illustrate
that in certain parameter regimes of physical significance, the estimates can serve as
accurate predictors of the breather power and its dependence on the various system
parameters.
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1 Introduction

The discrete nonlinear Schrödinger (DNLS) model constitutes a ubiquitous example
of a nonlinear dynamical lattice with a wide range of applications, extending from the
nonlinear optics of fabricated AlGaAs waveguide arrays as in Christodoulides et al.
(2003), Kivshar and Agrawal (2003), Lederer et al. (2008), to the atomic physics of
Bose–Einstein condensates in sufficiently deep optical lattices analyzed in Konotop
and Brazhnyi (2004), Morsch and Oberthaler (2006), Kevrekidis and Frantzeskakis
(2004), Kevrekidis et al. (2008). Partly also due to these applications, the DNLS
has been a focal point of numerous mathematical/computational investigations in its
own right, a number of which has been summarized in Kevrekidis et al. (2001), Eil-
beck and Johansson (2003), Kevrekidis (2009), Flach and Willis (1998), Hennig and
Tsironis (1999), Flach and Gorbach (2008) and is related to models used in numer-
ous other settings including micromechanical cantilever arrays (Sato et al. 2006) and
DNA breathing dynamics (Peyrard 2004), among others.

In this work we consider a variant of the DNLS equation of the following form:

iψ̇n + ε(Δdψ)n + αψn

N∑

j=1

(Tjψ)n∈ZN + β|ψn|2σ ψn = 0, (1.1)

on a N -dimensional lattice which can be finite if supplemented with Dirichlet bound-
ary conditions, or infinite (n ∈ Z

N ). In (1.1), ε > 0 is a discretization parame-
ter (usually ε ∼ h−2 with h being the lattice spacing), and (Δdψ)n stands for the
N -dimensional discrete Laplacian,

(Δdψ)n∈ZN =
∑

m∈Nn

ψm − 2Nψn, (1.2)

where Nn denotes the set of 2N nearest neighbors of the point in Z
N with label n.

The nonlinear operator Tj is defined for every ψn, n = (n1, n2, . . . , nN) ∈ Z
N , as

(Tjψ)n∈ZN = |ψ(n1,n2,...,nj +1,nj+1,...,nN )|2 + |ψ(n1,n2,...,nj −1,nj+1,...,nN )|2,
j = 1, . . . ,N. (1.3)

The nonlinearity parameters α,β ∈ R. In the case α = 0, β �= 0, one recovers the clas-
sical DNLS equation with power nonlinearity. The case where α,β �= 0, corresponds
to the DNLS equation with nonlinear hopping terms. The DNLS equation (1.1), is a
Hamiltonian model with a Hamiltonian of the form
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H[ψ] = ε(−Δdψ,ψ)2 −
N∑

j=1

+∞∑

nj =−∞
|ψ(n1,n2,...,nj ,nj+1,...,nN )|2

× |ψ(n1,n2,...,nj +1,nj+1,...,nN )|2 − β

σ + 1

∑

n∈ZN

|ψn|2σ+2. (1.4)

Let us for convenience discuss the 1D-lattice, where (1.1) reads

iψ̇n + ε(ψn−1 − 2ψn + ψn+1) + αψn

(|ψn+1|2 + |ψn−1|2
) + β|ψn|2σ ψn = 0,

(1.5)

with the Hamiltonian

H[ψ] = ε
∑

n∈Z

|ψn+1 − ψn|2 − α
∑

n∈Z

|ψn|2|ψn+1|2 − β

σ + 1

∑

n∈Z

|ψn|2σ+2. (1.6)

The Hamiltonian (1.4) and the power (or norm)

P [ψ] =
∑

n∈ZN

|ψn|2 (1.7)

are the conserved quantities of this lattice dynamical system.
We will present theoretical and numerical results related to the existence of time-

periodic (standing wave) solutions of the form

ψn(t) = eiΩtφn, Ω ∈ R. (1.8)

The physical interest in this particular model stems from various contexts, as
the modeling of quantum lattices and waveguide arrays and the approximation of
the dynamics of Klein–Gordon (KG) and Fermi–Pasta–Ulam (FPU) chains (Falvo
et al. 2006; Claude et al. 1993; Öster et al. 2003, 2004; Öster and Johansson 2005;
Johansson 2006). Equation (1.5) for cubic (σ = 1) nonlinearity corresponds to the
classical limit of the quantum DNLS equation introduced in Falvo et al. (2006). In the
quantum lattice introduced therein, the inclusion of the nonlinear hopping term allows
a fast energy propagation as long as α is high enough with respect to β . Such terms
(the additional ones to the classical DNLS with cubic onsite nonlinearity and linear
coupling between sites) have appeared in physical considerations within the model-
ing of waveguide arrays (Öster et al. 2003; Öster and Johansson 2005), establishing
that in the case of large penetration length or closely spaced waveguides these terms
are not negligible; however, it should be noted that in this case additional terms of
the same (cubic) order should be included in the relevant modeling (Öster et al. 2003;
Öster and Johansson 2005). Nonlinear hopping terms appear also from FPU and KG
chains of anharmonic oscillators coupled with anharmonic inter-site potentials, or
mixed FPU/KG chains. The generalized DNLS system of Claude et al. (1993) involv-
ing, among others, the nonlinear hopping terms considered therein has been derived
as a perturbation of the integrable Ablowitz–Ladik system, by the rotating wave ap-
proximation on the FPU chain. A similar DNLS system has been derived in Johansson
(2006), approximating the slow dynamics of the fundamental harmonic in the Fourier
series expansion of discrete small amplitude modulational waves. The potential rel-
evance of such DNLS systems as models for the energy transport in helical proteins
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Fig. 1 Simple geometric interpretation of the energy lower bounds obtained by the fixed-point argument:
Breathers do not exist in the darker (red) area, the closed ball B(0,Rcrit) of 
2, centered at 0 and of radius
Rcrit. The lighter (green) area represents the area of the energy space where breather solutions exist.
Although the non-existence result does not depend on the dimension and the lattice parameters, the radius
Rcrit of the closed ball B(0,Rcrit) of non-existence, quantitatively is a function of the lattice parameters
α,β,σ , the frequency Ω and the dimension of the lattice N . Note that Rcrit is not sharp with respect to
non-existence. This is suggested from the case for which the excitation threshold Rthresh is present. In this
case it is possible that Rthresh > Rcrit, and the dark (red) area is enlarged (Color figure online)

has been discussed in Kundu (2000). However, it is worth remarking that additional
terms should also be taken into account therein, as well. Furthermore, such terms
have been studied in their own right mathematically while considering the properties
of potential traveling waves within a generalized class of DNLS models in Pelinovsky
(2006).

In this work, our main scope is to derive lower bounds for the energy of discrete
breathers for the DNLS system (1.1) and discuss their relevance as thresholds for
their existence. In this point of view, (1.1) seems to be of particular interest due to the
interplay and the expected competition of the nonlinear hopping and the generalized
power nonlinearities. Extending the arguments based on variational methods (Cuevas
et al. 2008a, 2008b, 2010) and the fixed-point approach of Karachalios (2006) to
establish the existence of solutions (1.8), we show the existence of lower bounds
on the power of breathers on either finite or infinite lattices. The bounds depend
explicitly on the dimension, and the nonlinear lattice parameters, as well as on the
frequency of the solution. They have a simple geometric interpretation visualized in
Fig. 1, elucidated in particular by the fixed-point approach: The energy bounds can
be interpreted as the radius Rcrit of the closed ball centered at 0 in the energy space

2, denoted by B(0,Rcrit). Breathers do not exist in the closed ball B(0,Rcrit), and
a non-trivial (e.g. non-zero) breather solution being in 
2 \ B(0,Rcrit) should have
energy P > R2

crit. The result is of physical significance related to energy thresholds
(where by “energy” here we mean power, or squared 
2 norm) for the formation of
breather solutions. In particular, it indicates that for a given set of parameters, no
periodic localized solution can have a power less than the prescribed estimates.

It should be remarked that this result is of different nature if compared with the
excitation threshold phenomenon of Flach et al. (1997), Weinstein (1999) for dis-
crete breather families, possessing a positive lower bound on their energy when the
lattice dimension N is greater than or equal to some critical dimension. In the context
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of DNLS systems with power nonlinearity, the restriction for the appearance of the
excitation threshold is interpreted in terms of the nonlinearity exponent as σ ≥ 2

N

(Weinstein 1999). In this point of view, σ can be considered as critical when σ = 2
N

and supercritical (subcritical) when σ > 2
N

(σ < 2
N

), and the excitation threshold ex-
ists in the case σ ≥ 2

N
. It is crucial to remark that the set of parameters for which

the excitation threshold Rthresh is apparent suggests that the energy bounds Rcrit are
not sharp as thresholds for existence/non-existence. In particular, when Rcrit is the
value derived by the fixed-point approach, it is observed that Rthresh > Rcrit (Cuevas
et al. 2008a, 2010). For further discussions on the excitation threshold for FPU and
Klein–Gordon lattices we refer the interested reader to Kastner (2004).

Section 2 is devoted to the derivation of the estimates by variational and energy
methods employed in the case of finite lattices, and Sect. 3 is devoted to the fixed-
point approach in infinite lattices. While the methods are applicable for both subcrit-
ical and supercritical nonlinearities, in the latter case we investigate their interplay
with the optimal constant of the discrete interpolation inequality of Weinstein (1999)
and its analytical estimation proposed in Cuevas et al. (2009) (Sect. 3.2). In Sect. 4 we
perform a numerical analysis testing the lower bounds as thresholds for non-existence
of breathers with respect to the variation of the lattice parameters, while Sect. 5 briefly
summarizes our conclusions. The previous studies proved the validity of these bounds
as energy thresholds for the existence of breather solutions and justified that there are
elements of breather families (parametrized by the lattice parameters) which tend to
saturate the theoretical bounds in the case of large and small nonlinearity exponents.
Aiming to improve this prediction for extended parameter regimes, we consider a
refinement of the lower bounds, on account of the finite localization length of the
true breather solutions and the expectation that the main contribution to the power
comes from the central and adjacent sites, being the most excited. To incorporate this
claim in the numerical simulations, we perform a cut-off procedure which considers
the part of the system for the oscillators occupying a unit length around the central
site plus the adjacent to this unit length as well. This cut-off improves the capture
of the contribution of the linear part of the system to the power, manifested in the
bounds by the first eigenvalue of the linear operator. The first eigenvalue estimates
the contribution of the linear part from below. Contrary to the estimation of the linear
part in the real length, its unit length approximation is not negligible since the linear
mode over the latter is strongly localized. This is reflected in the numerical simula-
tions performed for the case of the cubic nonlinearity. These calculations reveal that
in the weak coupling regime the bounds are getting closer to the numerical power,
and in some cases provide its accurate prediction. This quantitative response is ob-
served in particular versus the nonlinear hopping parameter α. The accuracy of the
estimates indicates that the approach presented can be promising in a study of DNLS
systems encountered in the aforementioned applications, involving the full expansion
of nonlinear hopping terms being, however, of the same order.

We conclude the introductory section, by mentioning that although our results
concern both the cases of finite and infinite lattices the term “breather” has been used
for the standing wave solutions (1.8) in the finite case, only for the sake of brevity. The
important issue of the localization properties of the solutions in the transition from
finite to infinite lattice is not addressed in the present work. We refer to Penati and
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Paleari (2012) for a detailed discussion of the spatial decay and stability properties
of the solutions when the lattice size is varied for small-amplitudes (i.e., near the
continuum limit), as well as, for relative localization estimates. For the convergence
of solutions, defined by constrained variational problems in finite lattices to unimodal
and even profile breather solutions (centered on a site or between two lattice sites) in
infinite lattices, we refer the interested reader to Herrmann (2011).

Preliminaries For convenience, we recall from Cuevas et al. (2008a, 2008b) some
preliminary information on various norms and quantities, which will be thoroughly
used in what follows.

The finite-dimensional problem is formulated in the finite-dimensional subspaces
of the sequence spaces 
p , 1 ≤ p ≤ ∞,


p
(
Z

N
K

) = {
φ ∈ 
p : φn = 0 for |||n||| > K

}
, (1.9)

where |||n||| = max1≤i≤N |ni | for n = (n1, n2, . . . , nN) ∈ Z
N . Note that in the case of

the infinite lattice Z
N

‖φ‖q ≤ ‖φ‖p, 1 ≤ p ≤ q ≤ ∞ (1.10)

0 ≤ ε(−Δdφ,φ)2 ≤ 4εN
∑

n∈ZN

|φn|2. (1.11)

For the finite-dimensional case we find that 
p(ZN
K) ≡ C

(2K+1)N , endowed with the
norm

‖φ‖p =
( ∑

|||n|||≤K

|φn|p
) 1

p

,

and that the well known equivalence of norms,

‖φ‖q ≤ ‖φ‖p ≤ (2K + 1)
N(q−p)

qp ‖φ‖q, 1 ≤ p ≤ q < ∞, (1.12)

holds.
At this point let us remark on some basic facts on the eigenvalues of the discrete

Dirichlet Laplacian, since they will naturally appear in the estimates that will be
derived and have an important role in the numerical simulations. For the 1D-lattice
of K +2 oscillators, n = 0, . . . ,K +1, let us consider the discrete eigenvalue problem
for φn ∈ R,

−εΔdφn = μφn, n = 1, . . .K, (1.13)

with Dirichlet boundary conditions, φ0 = φK+1 = 0. Starting from the standard case

ε = 1

h2
where h = L

K + 1
, (1.14)

where L denotes the length of the chain, the eigenvalues are

μn(h) = 4

h2
sin2

(
nπh

2L

)
= 4(K + 1)2

L2
sin2

(
nπ

2(K + 1)

)
, n = 1, . . . ,K.
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Thus, in the case (1.14) the principal eigenvalue is

μ1(h) = 4

h2
sin2

(
πh

2L

)
= 4(K + 1)2

L2
sin2

(
π

2(K + 1)

)
. (1.15)

The discrete system is modeled when h = O(1), and in the limits h → 0 and h → ∞
we have

lim
h→0

μ1(h) = λ1 = π2

L2
(continuous limit), (1.16)

lim
h→∞μ1(h) = 0 (anticontinuous limit). (1.17)

In the particular case of L = 1 we have

lim
h→0

μ1(h) = λ1 = π2, (1.18)

4 ≤ μ1(h) ≤ π2, for 0 < h ≤ 1. (1.19)

In a general discrete case the parameter ε > 0 can be either related or not related
with the lattice spacing h. As an example for the latter, we may fix the linear coupling
constant ε > 0, varying the number of oscillators, equidistanced with lattice spacing
h = L

K+1 . We have

μ1(h) = 4ε sin2
(

πh

2L

)
= 4ε sin2

(
π

2(K + 1)

)
,

lim
h→0

μ1(h) = 0 (h → 0 when K → ∞),
(1.20)

0 ≤ μ1(h) ≤ 4ε. (1.21)

Increasing K , (1.20)–(1.21) can be considered as a particular approximation of an in-
finite lattice. Note that in the case of the infinite lattice Z

N , for the discrete Laplacian
with ε = 1, we have σ(−Δd) ⊆ [0,4N ].

Relations (1.15) and (1.16), (1.17) are valid for a general coupling (depending or
not depending on the lattice spacing) behaving as ε ∼ 1

h2 with ε sufficiently large.
Similar observations are valid in the case of the N -dimensional discrete Laplacian.

Finally, we recall the variational characterization of the eigenvalues of the discrete
Laplacian in the finite-dimensional subspaces 
2(ZN

K), showing that μ1 > 0, can be
characterized as

μ1 = inf
φ∈
2(ZN

K
)

φ �=0

(−εΔdφ,φ)2∑
|||n|||≤K |φn|2 . (1.22)

Then, (1.22) implies the inequality

μ1

∑

|||n|||≤K

|φn|2 ≤ ε(−Δdφ,φ)2 ≤ 4εN
∑

|||n|||≤K

|φn|2. (1.23)
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2 Finite Dimensional Lattices

This section is devoted to the DNLS equation with nonlinear hopping terms α,β �= 0,
supplemented with Dirichlet boundary conditions

iψ̇n + ε(Δdψ)n + αψn

N∑

j=1

(Tjψ)n∈ZN + β|ψn|2σ ψn = 0, (2.1)

ψn = 0, ‖n‖ > K. (2.2)

We will employ a constrained variational approach on the nonlinear energy functional
involving the nonlinear hopping term. Noticing that the existence result can be estab-
lished by minimization of the Hamiltonian or by application of min-max methods
(e.g. mountain pass type theorems), the usage of alternative functionals may reveal
interesting conditions on the nonlinearity parameters. An example is given in Cuevas
et al. (2010, Sects. 2.2 and 2.3, pp. 9–18), where the minimization of a linear en-
ergy functional under a nonlinear constraint verified conditions for the co-existence
of breather profiles. For instance, this alternative approach for (2.1) will show the ex-
istence of a regime for the hopping parameter α where an upper bound for the power
is valid (see Remark 2.4).

Note that the case of Dirichlet boundary conditions is of interest, in particular for
numerical simulations; since the infinite lattice cannot be modeled numerically, nu-
merical investigations should consider finite lattices with Dirichlet or periodic bound-
ary conditions. The latter should be imposed for moving breathers when reaching the
boundary. We expect that the variational approach can be applied in the case of peri-
odic boundary conditions, but the details have to be checked.

We shall consider first the focusing case for the parameters α,β > 0 and we shall
briefly comment on the defocusing one α,β < 0 which can be treated similarly.

2.1 The Focusing Case α,β > 0—Solutions ψn(t) = eiΩtφn,Ω > 0

Substitution of the solution (1.8) into (1.1) shows that φn satisfies the system of alge-
braic equations

−ε(Δdφ)n + Ωφn − αφn

N∑

j=1

(Tj φ)n∈ZN − β|φn|2σ φn = 0, Ω ∈ R,‖n‖ ≤ K,

(2.3)

φn = 0, ‖n‖ > K. (2.4)

Let us note that in the anticontinuous limit ε = 0, the corresponding energy equation
reads

Ω
∑

‖n‖≤K

|φn|2 = α
∑

‖n‖≤K

|φn|2
N∑

j=1

(Tj φ)n∈ZN + β
∑

‖n‖≤K

|φn|2σ+2, α,β > 0.

Its positive right-hand side, implies directly that in the limit ε = 0, the focusing case
supports only solutions with Ω > 0.
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For ε > 0 we will also restrict our considerations to the case of solutions with
Ω > 0. We recall two auxiliary lemmas regarding the differentiability of the nonlin-
ear terms if viewed as nonlinear functionals, which can be proved as in Karachalios
(2006, Lemma 2.3, p. 121).

Lemma 2.1 Let φ ∈ 
2. Then the functional

V (φ) =
N∑

j=1

+∞∑

nj =−∞
|φ(n1,n2,...,nj ,nj+1,...,nN )|2|φ(n1,n2,...,nj +1,nj+1,...,nN )|2,

is a C1(
2,R) functional and for all ψ ∈ 
2,

〈
V ′(φ),ψ

〉 = 2Re
N∑

j=1

+∞∑

nj =−∞
|φ(n1,n2,...,nj +1,nj+1,...,nN )|2

× φ(n1,n2,...,nj ,nj+1,...,nN )ψ(n1,n2,...,nj ,nj+1,...,nN )

+ 2Re
N∑

j=1

+∞∑

nj =−∞
|φ(n1,n2,...,nj −1,nj+1,...,nN )|2

× φ(n1,n2,...,nj ,nj+1,...,nN )ψ(n1,n2,...,nj ,nj+1,...,nN ). (2.5)

Lemma 2.2 Let φ ∈ 
2. Then the functional

L(φ) =
∑

n∈ZN

|φn|2σ+2

is a C1(
2,R) functional and
〈

L′(φ),ψ
〉 = 2(σ + 1)Re

∑

n∈ZN

|φn|2σ φnψn. (2.6)

The two Lemmas 2.1 and 2.2 remain valid in the case of the finite lattice (space

2(ZN

K)).
The first result on the existence of time-periodic solutions (1.8) of (2.1), is via a

constrained minimization problem for the functional

E [φ] := ε(−Δdφ,φ)2 + Ω
∑

n∈ZN

|φn|2 − αV (φ), Ω > 0, α > 0. (2.7)

Theorem 2.3

A. Consider the variational problem on 
2(ZN
K)

inf

{
E [φ] : 1

σ + 1
L[φ] = M

}
, (2.8)

for some Ω > 0. Then, there exists a minimizer φ̂ ∈ 
2(ZN
K) for the variational

problem (2.8) and β(M) > 0, both satisfying the Euler–Lagrange equation (2.3)–
(2.4) and

∑
n∈Z

N
K

|φ̂n|2σ+2 = M(σ + 1).
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B. Assume that the power of a solution of the problem (2.3)–(2.4) is P [φ̂] = R2.
Then the power satisfies the lower bound

R2∗,f < R2 = P [φ̂], (2.9)

where R∗,f denotes the unique positive root of the algebraic equation

βχ2σ + 2αNχ2 − (μ1 + Ω) = 0. (2.10)

C. We assume that

σ > 1. (2.11)

Then a breather solution of (1.1) satisfies the lower bound

[
1

2β

(
Ω + μ1 − (2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ

)] 1
σ

< R2, (2.12)

in either one of the cases:
(i) (lattice spacing condition) For all Ω > 0 if

ε >
(2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

λ1σ
. (2.13)

(ii) (frequency condition) For all ε > 0 if

Ω >
(2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ
. (2.14)

Proof A. We consider the set

Bσ =
{
φ ∈ 
2(

Z
N
K

) : 1

σ + 1
L[φ] = M

}
.

From Lemma 2.5, we may easily infer that E : Bσ → R is a C1-functional. Moreover,
by using inequality (1.12), we deduce that

E [φ] ≥ −αV [φ]
≥ −αN

∑

n∈ZN

|φn|2‖φ‖2
2 ≥ −αN‖φ‖4

2

≥ −αN(2K + 1)
2Nσ
σ+1

(
L[φ]) 2

σ+1

= −αN(2K + 1)
2Nσ
σ+1

(
M(σ + 1)

) 2
σ+1 .

Therefore, the functional E : Bσ → R is bounded from below. By the definition of
the set Bσ and the fact that we are restricted to the finite-dimensional space 
2(ZN

K),
it immediately follows that any minimizing sequence associated with the variational
problem (2.8) is precompact. Hence, by the Weierstraß minimization theorem (Zei-
dler 1995, Proposition 8, p. 37), any minimizing sequence has a subsequence con-
verging to a minimizer and E attains its infimum at a point φ̂ in Bσ . To derive the
variational equation (2.3), we consider first the C1-functional (due to Lemma 2.2)
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LM [φ] = 1

σ + 1
L[φ] − M,

and we observe that for any φ ∈ Bσ

〈
L′

M [φ], φ〉 = 2L[φ] = 2M.

Thus, the Regular Value Theorem (Chow and Hale 1982, Sect. 2.9; Haskins and
Speight 2002, Appendix A, p. 556) implies that the set Bσ = L−1

M (0) is a C1-
submanifold of 
2(ZN

K). Application of the Lagrange multiplier rule implies the ex-
istence of a parameter β = β(M) ∈ R, such that

〈
E ′[φ̂] − βL′

M [φ̂],ψ 〉 = 2ε(−Δdφ̂,ψ)2 + 2ΩRe
∑

n∈ZN

φ̂nψn

− 2αRe
N∑

j=1

+∞∑

nj =−∞
|φ̂(n1,n2,...,nj +1,nj+1,...,nN )|2

× φ̂(n1,n2,...,nj ,nj+1,...,nN )ψ(n1,n2,...,nj ,nj+1,...,nN )

− 2αRe
N∑

j=1

+∞∑

nj =−∞
|φ̂(n1,n2,...,nj −1,nj+1,...,nN )|2

× φ̂(n1,n2,...,nj ,nj+1,...,nN )ψ(n1,n2,...,nj ,nj+1,...,nN )

− 2βRe
∑

n∈ZN

|φ̂n|2σ φ̂nψn = 0, for all ψ ∈ 
2(
Z

N
K

)
.

(2.15)

Setting ψ = φ̂ in (2.15), we find that

F [φ̂] := ε(−Δdφ̂, φ̂)2 + Ω
∑

n∈ZN

|φ̂n|2

− 2αRe
N∑

j=1

+∞∑

nj =−∞
|φ̂(n1,n2,...,nj +1,nj+1,...,nN )|2|φ̂(n1,n2,...,nj ,nj+1,...,nN )|2

− 2αRe
N∑

j=1

+∞∑

nj =−∞
|φ̂(n1,n2,...,nj −1,nj+1,...,nN )|2|φ̂(n1,n2,...,nj ,nj+1,...,nN )|2

= β
∑

n∈ZN

|φ̂n|2σ+2. (2.16)

By virtue of (1.23), we deduce that the estimate

F [φ̂] ≥ μ1‖φ̂‖2
2 + Ω‖φ̂‖2

2 − 2αN
∑

n∈ZN

‖φ̂‖2
2|φ̂n|2

≥ μ1‖φ̂‖2
2 + Ω‖φ̂‖2

2 − 2αN‖φ̂‖4
2 (2.17)

holds. Let us assume that P [φ̂] = ‖φ̂‖2
2 = R2. Then from (2.17), we obtain

F [φ̂] ≥ R2(μ1 + Ω − 2αNR2).
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Therefore, assuming that

R2 <
μ1 + Ω

2αN
, (2.18)

or assuming in terms of α that

0 < α <
μ1 + Ω

2NR2
, (2.19)

we deduce that F [φ̂] > 0. Since φ̂ ∈ Bσ cannot be identically zero and F [φ̂] > 0, it
follows from (2.16) that β > 0. Summarizing, we have proved that for given Ω > 0,
there exists a minimizer φ̂ and a Lagrange multiplier β > 0 solving the variational
equation (2.15). Clearly a solution of the variational equation (2.15) is a solution of
the Euler–Lagrange equation (2.3)–(2.4).

B. It is necessary to verify first that any solution φ̂ of (2.3)–(2.4) is a solution of
the minimization problem (2.8). Indeed, if φ̂ is a solution of (2.3)–(2.4), multiplying
(2.3) by φ̂ in the 
2(ZN

K) and using the Dirichlet boundary conditions we infer that φ̂

satisfies (2.16), written as

F [φ̂] = βL[φ̂]. (2.20)

Then, due to Lemmas 2.1 and 2.2, φ̂ solves also the equation
〈

F ′[φ̂],ψ 〉 = β
〈

L′[φ̂],ψ 〉
, for all ψ ∈ 
2(

Z
N
K

)
.

Comparing (2.15) with (2.16) it can be easily seen that the equation above is equiva-
lent to

〈
E ′[φ̂],ψ 〉 = β

〈
L′[φ̂],ψ 〉

, for all ψ ∈ 
2(
Z

N
K

)
, (2.21)

thus, φ̂ is a minimizer of the minimization problem (2.8). The converse follows im-
mediately by (2.21) and the fact that in the discrete setting a “weak solution” of (2.21)
coincides with a solution of (2.3)–(2.4). Furthermore, by setting ψ = φ̂ in (2.21) we
recover that φ̂ satisfies (2.20).

Assuming now that the power of the solution of (2.3) is P [φ̂] = ‖φ̂‖2
2 = R2, by

using (1.12) and (1.23) we find from (2.20) that R satisfies the inequality

μ1 + Ω ≤ 2αNR2 + βR2σ . (2.22)

The algebraic equation (2.10) considered for χ ∈ [0,∞), has exactly one positive
root 0 < R∗,f . Then, comparison of (2.10) with inequality (2.22), implies that the
power P [φ̂] must satisfy the lower bound (2.9).

C. Applying Young’s inequality

ab <
ε̂

p
ap + 1

qε̂q/p
bq, a, b > 0 for any ε̂ > 0,1/p + 1/q = 1,

with p = σ , q = σ
σ−1 a = R2, b = 2αN and ε̂ = βσ we get

2αR2 ≤ βR2σ + (2αN)
σ

σ−1

(βσ)
1

σ−1

σ − 1

σ
. (2.23)

Inserting (2.23) into (2.22) we derive the lower bound (2.12). �
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Remark 2.4

1. (The lower bound for the cubic nonlinearity.) For the case of cubic nonlinearity
σ = 1, inequality (2.22) implies that the power of the periodic solution ψn(t) =
eiΩt φ̂n, Ω > 0 must satisfy the lower bound

μ1 + Ω

2αN + β
< R2 = P [φ̂]. (2.24)

2. (Interpretation of condition (2.18).) The result of Theorem 2.3 establishes for ar-
bitrary given Ω > 0 and α > 0, the existence of a non-trivial φ̂ ∈ 
2(ZN

K) and the
existence of β > 0 as a Lagrange multiplier such that ψn(t) = eiΩt φ̂n, solves (2.1)
with β > 0 as a parameter for the power nonlinearity. On the account of this re-
sult, the meaning of condition (2.18) is that there exists β > 0 and a range of the
hopping parameter 0 < α < α∗ for which the associated minimizer φ̂ has power
satisfying the upper bound

P [φ̂] = R2 <
μ1 + Ω

2αN
. (2.25)

Note that the existence of the range of the hopping parameter α stated above is
also established by (2.18)—see (2.19).

3. (Case α → 0, β > 0-DNLS with power nonlinearity.) The proof of Theorem 2.3
remains valid for the case α = 0, where one has to consider the constrained mini-
mization problem (2.8) for the functional E , setting α = 0. Thus for the classical
DNLS with power nonlinearity we recover from inequality (2.22), the lower bound

[
μ1 + Ω

β

] 1
σ

< R2 = P [φ̂]. (2.26)

The lower bound (2.26) is the same as (5.27) and (5.31) of Cuevas et al. (2008a)
for the DNLS with power nonlinearity.

2.2 The Defocusing Case α,β < 0—Solutions ψn(t) = e−iΩtφn,Ω > 0

We shall briefly comment on the existence of breather solutions, for the case of neg-
ative nonlinear parameters α,β < 0. We set for convenience α = −κ, β = −λ where
κ,λ > 0. It should be remarked that the case of negative parameters can be reduced
to the case of positive ones, under the staggering transformation. We recall that this
transformation is defined as

ψn → (−1)|n|ψn, |n| =
N∑

i=1

ni, (2.27)

(see e.g. the discussion of Kevrekidis et al. 2006, p. 7). The case of negative parame-
ters, corresponds to the existence problem for solutions

ψn(t) = e−iΩtφn, Ω > 0, (2.28)

where φn satisfies the system of algebraic equations
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−ε(Δdφ)n − Ωφn + κφn

N∑

j=1

(Tj φ)n∈ZN + λ|φn|2σ φn = 0,Ω > 0, ‖n‖ ≤ K,

(2.29)

φn = 0, ‖n‖ > K. (2.30)

The proof of the existence of breather solutions (2.28) is very similar to that of The-
orem 2.3, and we refrain from giving the details. We just note that the constrained
minimization problem will consider the C1-functional

E [φ] := ε(−Δdφ,φ)2 − Ω
∑

n∈ZN

|φn|2 + κV (φ),Ω > 0, κ > 0. (2.31)

Theorem 2.5

A. Consider the variational problem on 
2(ZN
K)

inf

{
E [φ] : 1

σ + 1
L[φ] = M

}
(2.32)

for some Ω > 0. Assume further that

Ω > 4εN. (2.33)

Then, there exists a minimizer φ∗ ∈ 
2(ZN
K) for the variational problem (2.32)

and λ(M) > 0, satisfying both the Euler–Lagrange equation (2.29)–(2.30) and∑
n∈ZN |φ∗

n|2σ+2 = M .
B. Assume that (2.33) holds and that the power of a solution of the problem (2.29)–

(2.30) is P [φ∗] = R2. Then the power satisfies the lower bound

R2∗,d < R2 = P [φ∗], (2.34)

where R∗,d denotes the unique positive root of the equation

λχ2σ + 2κNχ2 − (Ω − 4εN) = 0. (2.35)

C. Let σ > 1 and assume that

Ω > 4εN + σ − 1

λ
1

σ−1

(
2κN

σ

) σ
σ−1

. (2.36)

Then the power satisfies the lower bound

[
1

2λ

(
Ω − 4εN − (2κN)

σ
σ−1

(λσ )
1

σ−1

σ − 1

σ

)] 1
σ

< R2 = P [φ∗]. (2.37)

Remark 2.6

1. (The lower bound for the cubic nonlinearity.) For the case of negative parameters
α = −κ,β = −λ, κ,λ > 0 and of cubic nonlinearity σ = 1, the power of the
periodic solution ψn(t) = e−iΩt φ̂n, Ω > 0 must satisfy the lower bound

Ω − 4εN

2κN + λ
< R2 = P

[
φ∗], Ω > 4εN. (2.38)
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2. (An upper bound for some range of parameters.) The result of Theorem 2.5
establishes for given Ω > 4ε and α = −κ < 0, the existence of a non-trivial
φ∗ ∈ 
2(ZN

K) and the existence of β = −λ < 0 such that ψn(t) = e−iΩtφ∗
n , solves

equation (2.1) with β > 0 as a parameter for the power nonlinearity. As in Remark
2.4-2, a similar condition to (2.18) can be derived, implying that there exist a pa-
rameter λ and a range for the hopping parameter κ for which the corresponding
minimizer φ∗ has power satisfying the upper bound

P
[
φ∗] <

Ω − 4εN

2κN
, Ω > 4εN. (2.39)

3. (Case κ → 0, λ > 0-DNLS with defocusing power nonlinearity.) The proof of
Theorem 2.5 remains valid for the case κ = 0, where one has to consider the
constrained minimization problem (2.32) for the functional E , setting κ = 0. Thus
for the classical DNLS with power nonlinearity we recover the lower bound

[
Ω − 4εN

λ

] 1
σ

< R2 = P
[
φ∗], Ω > 4εN. (2.40)

The lower bound (2.26) is exactly the same as that derived in Cuevas et al. (2008a)
for the one-dimensional DNLS with defocusing power nonlinearity.

4. Condition (2.33) is related with the extension of the phonon band for defocusing-
type DNLS equations, to the interval [0,4εN ]. Combining the results of Theo-
rem 2.3 for the focusing case and of Theorem 2.5 for the defocusing one, we see
that for breathers in the ansatz ψn = e−iΩtφn, frequencies Ω ∈ R, must lie in the
intervals Ω > 4εN (defocusing case) and Ω < 0 (focusing case).

3 Infinite Z
N , N ≥ 1 Lattices

For the infinite lattice Z
N , we will consider the problem of energy bounds for

breathers of the DNLS (1.1) by a fixed-point method. The method establishes that the
stationary problem (2.3) defines a locally Lipschitz map on the phase space 
2. When
the map is a contraction, gives rise only to the trivial solution. The Lipschitz constant
for the contraction mapping defines the critical power above which we should expect
existence of breathers. Below this critical power there is non-existence of breather
solutions. The Lipschitz constant contains all the lattice parameters, including the
dimension of the lattice and the frequency of the solution.

3.1 The Case α,β > 0—Solutions ψn(t) = eiΩt , Ω > 0: Fixed-Point Method

The infinite system of algebraic equations (2.3) for breathers in the case of the in-
finite lattice will be treated by a fixed-point argument. We recall that the linear and
continuous operator

−εΔd + Ω: 
2 → 
2, (3.1)

satisfies the assumptions of Lax–Milgram Theorem (Zeidler 1990, Theorem 18.E,
p. 68), since
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ε(−Δdφ,φ)2 + Ω‖φ‖2
2 ≥ Ω‖φ‖2

2 for all φ ∈ 
2.

This is the first step to verify that for given z ∈ 
2, the auxiliary problem defined by
the linear operator equation

−εΔdφn + Ωφn = αzn

N∑

j=1

(Tj z)n∈ZN + β|zn|2σ zn, (3.2)

has a unique solution φ ∈ 
2. The second step, according the Lax–Milgram Theorem,
is to justify that the right-hand side of (3.2) is in 
2 if z ∈ 
2. Indeed, by using the
inequality

∑

n∈ZN

|φn|p ≤
( ∑

n∈ZN

|φn|q
) p

q

, for all 1 ≤ q ≤ p ≤ ∞, (3.3)

for p = 4σ + 2 and q = 2, it follows that
∥∥|z|2σ z

∥∥2
2 ≤

∑

n∈ZN

|zn|4σ+2 ≤ ‖z‖4σ+2
2 . (3.4)

Furthermore, for the nonlinear map J : 
2 → 
2,

J [zn] = zn

N∑

j=1

(Tj z)n∈ZN ,

we have
∥∥J [z]∥∥2

2 ≤ 2N sup
n∈ZN

|zn|2
∑

n∈ZN

|zn|2 ≤ 2N‖z‖4
2.

Therefore we are allowed to define the map A : 
2 → 
2, by A(z) := φ, where φ is a
unique solution of the operator equation (3.2). Clearly the map A is well defined. Let
ζ, ξ be in the closed ball

BR := {
z ∈ 
2 : ‖z‖
2 ≤ R

}
,

and φ = A(ζ ), ψ = A(ξ). The difference χ := φ − ψ satisfies the equation

−εΔdχn + Ωχn = α
(

J [ζn] − J [ξn]
) + β

(|ζn|2σ ζn − |ξn|2σ ξn

)
. (3.5)

We consider the linear and continuous operator M : 
2 → 
2

M[zn] =
N∑

j=1

[z(n1,n2,...,nj +1,nj+1,...,nN ) + z(n1,n2,...,nj −1,nj+1,...,nN )],

satisfying
∥∥M[φ] − M[ψ]∥∥2 ≤ 2N‖φ − ψ‖, for all φ,ψ ∈ 
2. (3.6)

Then, the first term of the right-hand side of (3.5) can be written as

α
(

J [ξn] − J [ζn]
) = αM

[|ξn|2
]
(ξn − ζn) + αζn

(
M

[|ξn|2
] − M

[|ζn|2
])

.
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By using (3.6) and inequality (3.3) for p = 4 and q = 2, we observe that
∥∥M

[|ξ |2](ξ − ζ )
∥∥2

2 =
∑

n∈ZN

M2[|ξn|
]|ξn − ζn|2

≤ sup
n∈ZN

∣∣M
[|ξn|2

]∣∣2 ∑

n∈ZN

|ξn − ζn|2

≤ 4N2
∑

n∈ZN

|ξn|4
∑

n∈ZN

|ξn − ζn|2

≤ 4N2
( ∑

n∈ZN

|ξn|2
)2 ∑

n∈ZN

|ξn − ζn|2

≤ 4N2R4‖ξ − ζ‖2
2. (3.7)

Using again (3.7) we get
∥∥ζ

(
M

[|ξ |2] − M
[|ζ |2])∥∥2

2 =
∑

n∈ZN

|ζn|2
∣∣M

[|ξn|2
] − M

[|ζn|2
]∣∣2

≤ 4N2 sup
n∈ZN

|ζn|2
∑

n∈ZN

∣∣|ξn|2 − |ζn|2
∣∣

≤ 4N2R2 sup
n∈ZN

(|ξn| + |ζn|
)2 ∑

n∈ZN

|ξn − ζn|2

≤ 8N2R4‖ξ − ζ‖2
2. (3.8)

Hence, from (3.7) and (3.8), the inequality
∥∥J [ξ ] − J [ζ ]∥∥2 ≤ √

12NR2‖ξ − ζ‖2 (3.9)

readily follows. Moreover, we have (cf. Cuevas et al. 2009, Lemma II.2)
∑

n∈ZN

∣∣|ζn|2σ ζn − |ξn|2σ ξn

∣∣2 ≤ (2σ + 1)2R4σ
∑

n∈ZN

|ζn − ξn|2. (3.10)

Now, taking the scalar product of (3.5) with χ in 
2 and using (3.9) and (3.10), we
have

ε(−Δdχ,χ)2 + Ω‖χ‖2
2 ≤ α‖χ‖2

∥∥J [ξ ] − J [ζ ]∥∥2 + β‖χ‖2
∥∥|ζ |2σ ζ − |ξ |2σ ξ

∥∥
2

≤ L(R)‖χ‖2‖ζ − ξ‖2, (3.11)

where

L(R) = √
12αNR2 + β(2σ + 1)R2σ .

Since (−Δdχ,χ)2 ≥ 0, from (3.11) we get the inequality

Ω‖χ‖2
2 ≤ L2(R)

2Ω
‖ζ − ξ‖2

2 + Ω

2
‖χ‖2

2. (3.12)

From (3.12), we conclude that
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‖χ‖2
2 = ∥∥A(z) − A(ξ)

∥∥2
2 ≤ L2(R)

Ω2
‖ζ − ξ‖2

2,

and, hence, the map A : BR → BR is Lipschitz continuous with the Lipschitz constant

M(R) = L(R)

Ω
.

The map A is a contraction, and hence, has a unique fixed point if

M(R) < 1. (3.13)

This unique fixed point is the trivial one, since A(0) = 0. We consider the polynomial
function

Π(R) := L(R) − Ω. (3.14)

The threshold value for the existence of non-trivial breather solutions can be derived
from condition (3.13), as in the proof of Theorem 2.3B: Denote by Rcrit the positive
root of the polynomial equation Π(R) = 0. Then Π(R) < 0 for every R ∈ (0,Rcrit),
that is, condition (3.13) is satisfied if R ∈ (0,Rcrit). Therefore breathers of arbitrary
energy do not exist. A breather should have power R2 > R2

crit. We summarize in

Theorem 3.1 We assume that the parameters α,β,σ > 0. Let Rcrit > 0 denote the
unique positive root of the polynomial equation Π(R) = 0, where Π(R) is given by
(3.14). Then a breather solution ψn(t) = eiΩtφn, for any Ω > 0 of (1.1) must have
power P > R2

crit.

The simple geometric interpretation of Theorem 3.1 is visualized in Fig. 1.
Breathers do not exist in the sphere B(0,Rcrit) of the energy space 
2.

3.2 Estimates for Supercritical Nonlinearity Exponents σ ≥ 2/N

A different version of dimension-dependent estimates in the case of the infinite lattice
can be produced by using the discrete interpolation inequality of Weinstein (1999)

∑

n∈ZN

|φn|2σ+2 ≤ C∗
( ∑

n∈ZN

|φn|2
)σ

(−Δdφ,φ)2, σ ≥ 2

N
. (3.15)

However, since (3.15) is valid only for σ ≥ N/2, the derived estimates will refer
only to this range of parameters. We recall that the range σ ≥ N/2 is related to the
appearance of the excitation threshold for breathers on DNLS lattices with power law
nonlinearity.

We start by multiplying (2.3) by φ and summing over Z
N , to get the equation

ε(−Δdφ,φ)2 + Ω
∑

n∈ZN

|φn|2 = α
∑

n∈ZN

N∑

j=1

|φn|2(Tjφ)n∈ZN + β
∑

n∈ZN

|φn|2σ+2.

(3.16)

Using (3.15) in order to estimate the (−Δdφ,φ)2 term of (3.16) we have
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ε

C∗

∑
n∈ZN |φn|2σ+2

(
∑

n∈ZN |φn|2)σ + Ω
∑

n∈ZN

|φn|2

≤ α
∑

n∈ZN

N∑

j=1

|φn|2(Tj φ)n∈ZN + β
∑

n∈ZN

|φn|2σ+2

≤ 2αN

( ∑

n∈ZN

|φn|2
)2

+ β
∑

n∈ZN

|φn|2σ+2. (3.17)

The inequality (3.17) can be rewritten as

ΩR2 ≤ 2αNR4 +
(

β − ε

C∗R2σ

) ∑

n∈ZN

|φn|2σ+2. (3.18)

By using (3.3), this time for p = 2σ + 2 and q = 2, the term
∑

n∈ZN |φn|2σ+2 of
(3.18) can be estimated in terms of the power

∑
n∈ZN |φn|2 = R2, as

∑

n∈ZN

|φn|2σ+2 ≤
( ∑

n∈ZN

|φn|2
) 2σ+2

2 = R2σ+2.

Thus, from (3.18) and the above estimate, we derive that

ΩR2 ≤ 2αNR4 +
(

β − ε

C∗R2σ

)
R2σ+2,

implying that the power satisfies the inequality
(

Ω + ε

C∗

)
≤ 2αNR2 + βR2σ . (3.19)

Theorem 3.2 Assume that σ ≥ 2/N and the parameters α,β,Ω > 0. Let R̂crit > 0
denote the unique positive root of the polynomial equation

2αNR2 + βR2σ −
(

Ω + ε

C∗

)
= 0.

Then a breather solution ψn(t) = eiΩtφn, for any Ω > 0 of (1.1) must have power
P > R̂2

crit.

For an even more explicit estimate, at least an estimation of the optimal constant
C∗ is needed. This is provided by

Proposition 3.3 Let σ ≥ 2/N . There exists νcrit > 1/2 such that the optimal constant
of the inequality (3.15) satisfies

1

4N
< C∗ <

νcrit√
2νcrit − 1

2σ + 1

4N
, N ≥ 1. (3.20)
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Proof One of the fundamental results of Weinstein (1999) is the characterization
of the optimal constant C∗ involving the excitation threshold for breathers of the
focusing DNLS equation with power nonlinearity. For instance, it is known that

Rthresh =
[
(σ + 1)ε

C∗

] 1
σ

.

On the other hand, it was proved in Cuevas et al. (2009, Proposition II.1, p. 6) that
there exists νcrit > 1/2 such that

[√
2νcrit − 1

νcrit
· 4Nε(σ + 1)

2σ + 1

] 1
σ

< Rthresh <
[
4εN(σ + 1)

] 1
σ . (3.21)

The estimate (3.20) follows by inserting the characterization for Rthresh into (3.21). �

Together with Proposition 3.3, Theorem 3.2 can be restated and refined as follows.

Theorem 3.4 We assume that

σ ≥ 2 when N = 1 and σ > 1 when N ≥ 2. (3.22)

Then a breather solution of (1.1) satisfies the lower bound

[
1

2β

(
Ω + 4εN

2σ + 1

√
2νcrit − 1

νcrit
− (2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ

)] 1
σ

< R2, (3.23)

in either the cases:

(i) (lattice spacing condition) For all Ω > 0 if

ε >
(2αN)

σ
σ−1

(βσ)
1

σ−1

(σ − 1)(2σ + 1)

4Nσ

νcrit√
2νcrit − 1

. (3.24)

(ii) (frequency condition) For all ε > 0 if

Ω >
(2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ
. (3.25)

Proof Inequality (3.19) can be strengthened from below by replacing 1/C∗ by its
lower estimate as indicated from (3.20). Then, (3.23) comes out exactly as in Theo-
rem 2.3C. �

We remark that in the case of the limit a = 0, if we repeat the calculations leading
to the energy equation (3.16) and inequalities (3.17)–(3.18), we derive the inequality

0 < ΩR2 ≤
(

β − ε

C∗R2σ

) ∑

n∈ZN

|φn|2σ+2. (3.26)

Now, the positivity of the right-hand side of (3.26) implies that in the limit α = 0, the
Ω-independent lower bound



J Nonlinear Sci (2013) 23:205–239 225

[
ε

C∗β

] 1
σ

< R2

is satisfied.
Let us also remark that the non-existence result of Theorem 3.1 is valid in finite

lattices, due to the validity of inequality (3.3) in the subspace 
2(ZN
K) of 
2(ZN).

Thus, the result can be proved in the case of finite lattices without any additional
implications. Similarly, inequality (3.15) is also valid in 
2(ZN

K) and the estimates
of Theorem 3.4 can be proved to be valid in finite lattices. The estimates of Theo-
rem 3.4 for the case σ ≥ 2/N , will be tested numerically in the next section where
the unspecified parameter νcrit will be also discussed.

4 Numerical Study

We present in this section, numerical results testing the behavior and relevance of
the theoretical estimates, in the case of the 1D lattice. The structure of this section is
as follows. In Sect. 4.1.1 we analyze theoretically a refinement of the original varia-
tional estimates on the example of the focusing case α,β > 0, aiming to improve the
capture of the contribution of the linear part of the system to the power. This contri-
bution is manifested in the bounds, by the first eigenvalue of the discrete Laplacian.
The refinement takes into account the localization of true breather solutions, by per-
forming a “cut-off” procedure, focusing on the most excited states. The improvement
is reflected in the numerical simulations performed in Sect. 4.1.2 for the case of the
cubic nonlinearity σ = 1, showing in particular that in some cases of the weak cou-
pling regime, the estimates provide an accurate prediction of the numerical power. In
Sect. 4.1.3 we present the numerical results for the case of the quintic nonlinearity
σ = 2. The refined variational estimates are valid, due to the translational invariance
of the “cut-off” procedure, even in the case of the infinite lattices, and have been
tested against the interpolation estimates (e.g. those by the interpolation inequality of
Gagliardo–Nirenberg type). It was interesting to observe that the refined variational
bounds give a better qualitative prediction when the nonlinearity parameter β is var-
ied, while the interpolation estimates behave better for large values of frequencies Ω .
Finally, in Sect. 4.2, we present an indicative numerical study of the interpolation
estimates in the defocusing case α < 0, β < 0. The main finding here is that the
theoretical predictions are improved for large values of the parameters β and σ .

We note that in all the numerical simulations, the results have been obtained for a
1D-lattice of K = 101 particles.

4.1 Focusing Case (α > 0, β > 0) with Dirichlet Boundary Conditions. Solutions
ψn(t) = eiΩtφn, Ω > 0

4.1.1 Theoretical Analysis of the “Cut-Off” Procedure

According to the results of Theorem 2.3A, without any restrictions on the exponent
σ > 0 of the nonlinearity, the first lower bound comes from the positive root R∗,f of
(2.10):
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βχ2σ + 2αNχ2 − (μ1 + Ω) = 0, σ > 0,N ≥ 1. (4.1)

Then any breather solution has power P [φ] satisfying the lower bound

R2∗,f < P , for all σ > 0, N ≥ 1. (4.2)

In the particular case of the cubic nonlinearity this lower bound reads

μ1 + Ω

2αN + β
< P , σ = 1, N ≥ 1. (4.3)

Due to its relevance from a physical point of view, we have chosen the cubic
nonlinearity for a first numerical test. The principal eigenvalue in (4.3) manifests
the contribution of the linear part of (1.5). The variational characterization of the
principal eigenvalue (1.22), shows that the contribution of the linear part to the real
breather is estimated from below by the eigenvector φ1 corresponding to the principal
eigenvalue μ1, since the infimum in (1.22) is attained by φ1 as

μ1 = (−εΔdφ1, φ1)2∑
|||n|||≤K |φ1

n|2 , (4.4)

and (1.22) holds for all φ ∈ 
2(ZN
K). Qualitatively and geometrically, this approxima-

tion of the linear part seems reasonable, especially for breather solutions without sign
changes (zero-crossings), since the eigenvector φ1 has no sign changes. On the other
hand, real numerical computations should consider a sufficiently large chain length L,
especially when the infinite chain is modeled in order to avoid the influence of bound-
ary conditions. In this case, μ1 → 0 (see (1.15)–(1.20)) and the contribution of this
approximation becomes negligible. This can be explained physically, taking into ac-
count the fact that the real breather solution has a localization length Lloc � L while
the eigenvector is extended through the entire chain length L. Proceeding further,
since the contribution to the power outside the breather width Lloc is also negligible,
we could “cut-off” the estimation procedure, estimating the power in Lloc and the
contribution of the linear part by the principal eigenvalue μ1,Lloc of (1.13) considered
on Lloc. Practically, since the breather width Lloc is unknown, we may perform this
“cut-off” procedure in an interval close to the interval of unit length L = 1, expect-
ing that the main contribution to the power comes from the excited sites included in
the unit interval. This is certainly true for breathers centered around the center of the
interval [−L,L] located at the site n = (K+1)

2 . It should be remarked that a breather
can be always centered around the principal site, especially in the infinite lattice due
to the integer translation invariance therein.

For instance, we will consider the interval U = [− 1
2 , 1

2 ] together with the first
neighbors adjacent to the points − 1

2 and 1
2 . We assume that the breather configuration

is described by the vector φ ∈ R
K+2

φ = (φ0, φ1, . . . , φK+1), φ0 = φK+1 = 0, (4.5)

where φn := φ(xn), xn = −L
2 + nh, n = 0, . . . ,K + 1. The number of oscillators

located outside the piece of the chain of unit length U = [− 1
2 , 1

2 ] is

θ = 2

⌈
(L

2 − 1
2 )(K + 1)

L

⌉
, (4.6)
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where �x� = min{n ∈ Z |n ≥ x}, x ∈ R. Then the number of oscillators included in
the unit interval U is

m = K + 2 − θ. (4.7)

We also assume that the neighbors adjacent to the end-points of U , are located at the
sites k and k + m + 1. Note that these neighbors coincide with the end-points of U

only when 1
h

∈ N. The distance y ≥ 0 of these neighbors to the end-points of U is
given by

y = h − 1 − (m − 1)h

2
, if

1

h
/∈ N, (4.8)

y = 0, if
1

h
∈ N. (4.9)

We denote by U ′ the interval occupied by the m oscillators in U and the two neigh-
bors adjacent to the end-points of U , i.e., containing m + 2 oscillators. The length of
U ′ is

L′ = 1 + 2y. (4.10)

We have the following.

Proposition 4.1 Let ε > 0, N = σ = 1. Then the power of the m oscillators included
in the interval U

PU =
k+m∑

n=k+1

|φn|2,

satisfies the estimate

4ε sin2( π
2(m+1)

) + Ω

2α + β
< PU < P , (4.11)

where the number of points m in U is given by (4.7).

Proof The breather configuration vector φ in (4.5) can be decomposed as φ =
φL\U + φU

φL\U = (φ0, φ1, . . . , φk−1, φk,0, . . . ,0, φk+m+1, . . . , φK+2), (4.12)

φU = (0, . . . ,0, φk+1, φk+2, . . . , φk+m,0 . . . ,0). (4.13)

Since the decomposition is linear, at first glance the elements φL\U and φU satisfy
the equations

−εΔdφU
n + ΩφU

n − αφU
n

(|φn+1|2 + |φn−1|2
) + β|φn|2σ φU

n = 0,

n = 0, . . . ,K + 2,

−εΔφ
L\U
n + Ωφ

L\U
n − αφ

L\U
n

(|φn+1|2 + |φn−1|2
) + β|φn|2σ φ

L\U
n = 0,

n = 0, . . . ,K + 2.

However, on the account of (4.13), the equation for φU can be written as
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−εΔdφU
n + ΩφU

n − αφU
n

(∣∣φU
n+1

∣∣2 + ∣∣φU
n−1

∣∣2) + β
∣∣φU

n

∣∣2σ
φU

n = 0,

n = k + 1, . . . , k + m + 1,

φU
k = φU

k+m+1 = 0.

Relabeling for convenience, the system for φU can be considered on the interval U ′
of the m + 2 oscillators j = 0, . . . ,m + 2 as

−εΔdφU
j + ΩφU

j − αφU
j

(∣∣φU
j+1

∣∣2 + ∣∣φU
j−1

∣∣2) + β
∣∣φU

j

∣∣2σ
φU

j = 0, j = 1, . . . ,m,

(4.14)

φU
0 = φU

m+1 = 0. (4.15)

We also consider the linear eigenvalue problem on U ′

−εΔdφj = μφj , j = 1, . . . ,m, (4.16)

φ0 = φm+1 = 0. (4.17)

The principal eigenvalue μ1,U ′ of (4.16)–(4.17) is given by

μ1,U ′ = 4ε sin2
(

πL′

2L′(m + 1)

)
= 4ε sin2

(
π

2(m + 1)

)
. (4.18)

Repeating the calculations of the proof of Theorem 2.3 on the system (4.14)–(4.15),
we derive that

μ1,U ′ + Ω

2α + β
< PU < P , σ = 1,N ≥ 1,

i.e., the left-hand side of (4.11). The left-hand side follows from the fact that P =∑K+2
j=1 |φj |2 > PU . �

Remark 4.2 The estimate (4.11) will be useful for the numerical simulations, since
it is valid for any ε and can be used for the fully discrete case, even in the case of
an infinite lattice. This is so because the interval U ′ where the procedure takes place,
is the same, independently of the length of the chain. Thus even in the case h > 0.5,
where the unit interval U contains only the centered site, we may perform the “cut-
off” procedure for the centered site and the two adjacent neighbors occupying the
interval U ′ of length L′ = 1 + 2y = 1 + 2(h − 1

2 ). The estimate (4.11) reads

4ε sin2(π
4 ) + Ω

2α + β
< PU < P , (4.19)

estimating the power of the breather in terms of the “most excited site”.

In the case we approximate the continuous limit by considering ε > 0 sufficiently
large, we have

Proposition 4.3 Let ε ∼= 1
h2 , N = σ = 1. Assume that ε is sufficiently large, or 1

h
∈ N.

The power of the m oscillators included in the interval U ,
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PU =
k+m∑

n=k+1

|φn|2,

satisfies

4(m + 1)2 sin2( π
2(m+1)

) + Ω

2α + β
< PU < P , (4.20)

where the number of points m in U is given by (4.7).

Proof Working as in the proof of Proposition 4.1, we estimate the linear part of
(4.14)–(4.15), by using the principal eigenvalue of the linear problem (4.16)–(4.17),
where in the case ε ∼= 1

h2 , is

μ1,U ′ ∼= 4

h′2 sin2
(

πh′

2L′

)
= 4

(m + 1)2

(1 + 2y)2
sin2

(
π

2(m + 1)

)
, (4.21)

since the spacing of U ′ is

h′ = L′

m + 1
= 1 + 2y

m + 1
.

The distance y is defined in (4.8)–(4.9). Letting h → 0 we have y → 0 (not mono-
tonically), and (4.21) implies that

μ1,U ′ ∼= 4(m + 1)2 sin2
(

π

2(m + 1)

)
. (4.22)

When 1
h

∈ N, the end-points of U ′ are xk = −1/2 and xk+m+1 = 1/2, and y = 0. �

Remark 4.4 When we approximate the continuum by considering ε > 0 sufficiently
large, we observe that the principal eigenvalue μ1,U ′ has the expression (1.15) for
L = 1, in terms of the number m+2 of oscillators occupying the interval U ′. Clearly,
since 1

m+1 < 1 for m ≥ 1

4 < μ1,U ′ = 4(m + 1)2 sin2
(

π

2(m + 1)

)
< π2, (4.23)

and we have the bounds

4 + Ω

2α + β
<

μ1,U ′ + Ω

2α + β
< PU < P . (4.24)

Besides, for large ε > 0, m > 1 is large enough and (4.23) and (4.24) justify the
approximation

μ1,U ′ ∼ 4ε sin2
(

π

2
√

ε

)
,

and the estimation of the power as

4 + Ω

2α + β
<

μ1,U ′ + Ω

2α + β
< PU < P , μ1,U ′ ∼ 4ε sin2

(
π

2
√

ε

)
. (4.25)
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Fig. 2 (a) Power of breathers versus nonlinear parameter α in the HDNLS system with cubic nonlinearity
(σ = 1) and ε = 1. Symbols (dots) correspond to numerical calculations for the exact solutions while the
triangles (grey) line represents estimation (4.19). The continuous (blue) curve corresponds to the estimate
(4.25). Other parameters: β = Ω = 1. (b) Breather profile (continuous (red) curve) against the eigenvector
(dashed (black) curve) of (4.16)–(4.17) on the interval U ′ of length L′ = 2. The eigenvector of (1.13) in
the length L of the chain is represented by the dashed-boxes (blue) curve (Color figure online)

4.1.2 Numerical Results: Cubic Nonlinearity σ = 1

We now turn to the presentation of the numerical results which starts with the case
ε = 1. The “cut-off” approximation of Proposition 4.1 takes place on the interval U ′
of length L′ = 2 (y = 0.5) and the unit interval U contains only one site (m = 1).
In Fig. 2(a), the real power of a breather family is plotted using dots against the
nonlinear parameter α. The lower bound obtained with the “cut-off” procedure (4.19)
is shown with a triangle (grey) line. Notice that it is always below the real power. The
qualitative prediction of the pattern of the numerical power as given by the theoretical
estimate should be remarked, due to the effective approximation of the contribution
of the linear and the nonlinear part to the power.

The continuous approximation (4.25) in the unit length, plotted with a continuous
blue curve, is not satisfied as a lower bound for all the values of the parameter α as
expected, since we are fairly far from the continuum limit. Remarkably, however, we
observe that for a quite large regime of the parameter α, the corresponding prediction
is below the numerical power. This is due to the fact that ε = 1 is a critical value for
our approximation in the sense that for ε = 1 the eigenvalue μ1,U ′ in (4.25) attains
its minimum μ1,U ′ = 4.

In Fig. 2(b) the breather profile (continuous (red) curve) is plotted against the
eigenvector on U ′ and the eigenvector on the length of the chain L for ε = Ω = 1 and
β = 2. Notice that the eigenvector in the length of the system L is spread out along
the chain (on the scale of the figure it is almost a horizontal line) and its contribution
to the estimates would be negligible.

In Fig. 3 we present the results of the study for ε = 2. Triangles (grey curve) cor-
respond again to the estimate (4.19), still valid in the interval U ′ having now length
L′ ∼ 1.414 and the unit interval U contains one site (m = 1). We observe the in-
creased quantitative accuracy of the prediction of the actual power (symbols (dots)).
The continuous approximation (4.25) in the unit length represented by the dash-
dotted (blue) curve is not satisfied as a lower bound as predicted by Propositions 4.1
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Fig. 3 (a) Power of breathers versus nonlinear parameter α in the HDNLS system with cubic nonlinearity
(σ = 1) and ε = 2. Symbols (dots) correspond to numerical calculations while the triangles (grey) line
represents estimation (4.19) obtained with the “cut-off” approximation of Proposition 4.1. The dash-dotted
(blue) curve corresponds to the continuous approximation (4.25). The first dotted (green) curve from below
represents the initial estimate (4.3) with the eigenvalue μ1 calculated over the length L of the system.
Other parameters: β = Ω = 1. (b) The power and its estimates versus the nonlinear parameter β . Other
parameters are chosen as α = Ω = 1 (Color figure online)

and 4.3. Nevertheless, it is worth observing that the continuous approximation is only
slightly above the actual value. This is connected to the fact that increasing values of
ε correspond to a closer approximation of the continuous limit. The dotted (green)
curve below the triangles represents the initial estimate (4.3) with the eigenvalue μ1
corresponding to the eigenvector of (1.13) over the original length L of the system. In
this case, the estimation of the contribution of the linear part to the power is negligible
as (1.20) shows, thus (4.3) is well below the actual power.

The effectiveness of the “cut-off” approximation of Proposition 4.1 and Re-
mark 4.2 on length L′, if compared with the initial estimate (4.3) on the length of
the system L is even more transparent in the study for ε = 3, where the results are
presented in Fig. 4. In this case L′ ∼ 1.154 and still m = 1. The curves are traced as
in Fig. 3, except the new continuous (red) curve which is above the theoretical esti-
mate (4.3). This curve corresponds to the lower bound in the left-hand side of (4.25).
We observe that the prediction of (4.19) is of excellent accuracy throughout the con-
tinuation over the nonlinear parameter α and of very good accuracy even versus the
nonlinear parameter β , being saturated for large values of β . It seems that the theo-
retical estimates capture better the variation over the nonlinear coupling coefficient α

rather than the onsite nonlinearity coefficient β . This is due to the fact that through
the estimation process of Theorem 2.3 the contribution of the hopping nonlinearity
is “doubled” by the nonlinear coupling with the adjacent sites (see the inequality
(2.22)), although both nonlinearities are of cubic order in the case σ = 1. For large
values of β the manifestation of the power nonlinearity is stronger. More precisely,
observe in Fig. 4(b) that the convergence of (4.19) to the real power starts after β ≥ 2,
i.e. after “doubling” the strength of the onsite nonlinearity. In this case, the contin-
uous approximation over the unit length approaches further the actual power (still,
however, from above).

The approximation procedure considers the cases ε = 1,2,3,4, as weak coupling
cases, in the sense that the unit length U contains only one point and the spacing
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Fig. 4 (a) Power of breathers versus the nonlinear parameter α in the DNLS system with cubic nonlin-
earity (σ = 1) and ε = 3. Symbols (dots) correspond to numerical calculations while the triangles (grey)
line represents estimation (4.19) obtained with the “cut-off” approximation of Proposition 4.1. The dash–
dotted (blue) curve corresponds to the continuous approximation (4.25). The first dotted (green) curve
from below represents the initial estimate (4.3) with the eigenvalue μ1 calculated over the length L of the
system. Other parameters are chosen as β = Ω = 1. (b) The power and its estimates versus the nonlinear
parameter β . Other parameters are α = Ω = 1 (Color figure online)

is h > 0.5. Note that U ′ has a different length (L′ = 2 for ε = 1, L′ ∼ 1.414 for
ε = 2, L′ ∼ 1.154 for ε = 3 and L′ = 1 for ε = 4). Since m = 1, the eigenvalue in U ′
given in (4.18) is always μ1,U ′ = 2ε. Thus, in the weak coupling case, the continuous
approximation in the unit length (4.25) is not valid and (4.25) is not satisfied as a
lower bound for the power. On the other hand, the discrete approximation with the
cut-off procedure within (4.19) becomes progressively better as ε is increased.

Propositions 4.1 and 4.3 predict that the position of the curves (4.19) and (4.25)
should be interchanged when ε > 4 (h < 0.5). In this case, the unit interval U con-
tains more than one site (m > 1) and (4.19) is not valid. In Fig. 5 we present the nu-
merical study for ε = 10. Here U ′ has length L′ ∼ 1.264, the unit interval U contains
three sites (m = 3) and h ∼ 0.316, which can be considered as gradually approaching
the continuous limit. Note that for ε > 4 we have L′ ≥ 1; however, y → 0 as ε is
increased. We observe that (4.19) is well above the actual breather power in this case,
while now (4.25) provides an adequate approximation especially versus the hopping
parameter α.

Figures 2(b) and 6(a)–(b) are showing the breather profiles versus the eigenvectors
on U ′ and the length L of the system, and demonstrate the main features of the ap-
proximation procedure. A first important feature is that both the real breather and the
approximating eigenvector for the linear part contribution on U ′ are localized. This
is in contrast to the eigenvector associated with μ1 (of the original problem) which
is extended over the entire length L of the system. This approximation of the linear
part is effective for values of the weak coupling, where the eigenvector on U ′ has a
width comparable with the localization length of the breather. In the anticontinuous
limit, we expect strong localization effects while the eigenvalue μ1,U ′ = 2ε becomes
negligible again, and the estimates are less effective.

The second feature is that although we are calculating only the contribution to
the energy of the sites included in U ′, the approximation is focusing on these sites
being the principal excited ones. Furthermore, Figs. 2(b) and 6(a), (b) demonstrate a
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Fig. 5 (a) Power of breathers versus nonlinear parameter α in the HDNLS system with cubic nonlinear-
ity (σ = 1) and ε = 10. Symbols (dots) correspond to numerical calculations while the triangles (grey)
line represents estimation (4.19) obtained with the “cut-off” approximation of Proposition 4.1. The dot-
ted-dashed (blue) curve corresponds to the estimate (4.25). The first dotted (green) curve from below
represents the initial estimate (4.3) with the eigenvalue μ1 calculated in the length L of the system and
the continuous (red) curve above stands for the estimate (4.25) with the lower bound 4ε ≤ μ1(ε). Other
parameters are chosen as β = Ω = 1. (b) The power and its estimates are shown versus the nonlinear
parameter β . Other parameters α = Ω = 1 (Color figure online)

Fig. 6 (a) Breather profile for ε = 3 (continuous (red) curve) against the eigenvector (dashed (black)
curve) of (4.16)–(4.17) on the interval U ′ of length L′ ∼ 1.154. The eigenvector of (1.13) in the length L

of the chain is represented by the dashed-boxes (blue) curve. Other parameters are α = 1, β = 5, Ω = 1.
(b) Breather profiles for ε = 10. Here L′ ∼ 1.264. Other parameters α = 1, β = 5, Ω = 1 (Color figure
online)

concentration of the “missing” power of the sites outside U ′ to the most excited sites
within the eigenvector on U ′. This is observable by a comparison of the profiles for
ε = 2,3,10. From the strong coupling to the anticontinuous limit, the breather profile
approaches the continuous one, while the eigenvector in U ′ converges to the continu-
ous eigenfunction. Then, both the difference between the breather and the eigenvector
width as well the difference of their “peaks” becomes constant, and again, the esti-
mates are becoming less effective. Besides, the methods of this paper are making
use of the properties of the discrete phase space and should be extended appropri-
ately in function spaces in order to capture effectively the behavior of the continuous
counterpart. Nevertheless, in this setting of larger ε, the continuum variant of the ap-
proximation over the interval U ′ yields a suitable lower threshold for the breather
power.
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4.1.3 Numerical Results: Quintic Nonlinearity σ = 2

Concerning the case of non-cubic nonlinearity (σ �= 1), an explicit estimate from
(4.2) comes out:

[
1

2β

(
Ω + μ1 − (2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ

)] 1
σ

< P , σ > 1,N ≥ 1, (4.26)

with some restriction on the parameters σ , Ω and ε given in Theorem 2.3C:
(i) for all Ω > 0 if

ε >
(2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

λ1σ
, σ > 1,N ≥ 1, (4.27)

and (ii) for all ε > 0 if

Ω >
(2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ
, σ > 1,N ≥ 1. (4.28)

In the non-cubic case, the cut-off approximation of Proposition 4.1 leads to

Corollary 4.5 Let σ > 1, N = 1. Then the estimate (4.26) is valid with μ1 replaced
by

A. μ1,U ′ = 4ε sin2( π
2(m+1)

) for any ε > 0.

B. μ1,U ′ ∼ 4ε sin2( π
2
√

ε
) when ε > 0 is sufficiently large.

The theoretical estimates proposed in Sect. 3 for infinite lattices can also be used.
While an infinite lattice cannot be modeled numerically, the estimates of Sect. 3 can
serve as alternatives to those summarized above for the finite lattice. The unspecified
parameter νcrit involved in (3.21), in the estimate (3.23) and restrictions (3.24)–(3.25)
has been determined by justified heuristic (and rigorous in the case of “large” σ )
arguments in Cuevas et al. (2009, Sect. III, p. 7). For instance it was revealed that the
value νcrit = 1 is valid for all N ≥ 1 and σ ≥ 1. Furthermore, this value is of very
good accuracy for N = 2 and excellent for N = 3. Let us also recall that this value
covers when σ ∈ N, the cases which are of main physical interest (see also Dorignac
et al. 2008 considering integer values of σ ≥ 2/N ).

For νcrit = 1, Theorem 3.2 predicts that for supercritical nonlinearity σ ≥ 2/N any
breather solution must have power

R̂2
crit < P . (4.29)

R̂crit is the positive root of the equation

2αNR2 + βR2σ −
(

Ω + 4εN

2σ + 1

)
= 0. (4.30)

Theorem 3.4 gives explicitly
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[
1

2β

(
Ω + 4εN

2σ + 1
− (2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ

)] 1
σ

< R2,

σ ≥ 2 when N = 1 and σ > 1 when N ≥ 2, (4.31)

in either of the cases below:

(i) for all Ω > 0 and lattice spacing satisfying

ε >
(2αN)

σ
σ−1

(βσ)
1

σ−1

(σ − 1)(2σ + 1)

4Nσ
,

σ ≥ 2 when N = 1 and σ > 1 when N ≥ 2, (4.32)

and
(ii) for all ε > 0 and frequencies

Ω >
(2αN)

σ
σ−1

(βσ)
1

σ−1

σ − 1

σ
,

σ ≥ 2 when N = 1 and σ > 1 when N ≥ 2. (4.33)

Additionally other choices of the parameter ε̂ in Young’s inequality trick (see The-
orem 2.3C), give versions of the estimates valid with different restrictions on the
coupling parameter ε or the frequency Ω . Together with the choice used in Theo-
rem 2.3C, another interesting one is the standard ε̂ = 1 corresponding to the version
of (3.23),

[
σ

σβ + 1

(
Ω + 4εN

2σ + 1
− (σ − 1)(2αN)

σ
σ−1

σ

)] 1
σ

< R2,

σ ≥ 2 when N = 1 and σ > 1 when N ≥ 2. (4.34)

The estimate (4.34) is valid

(i) for all Ω > 0 and lattice spacing satisfying

ε >
(2αN)

σ
σ−1 (σ − 1)(2σ + 1)

4Nσ
, σ ≥ 2 when N = 1 and σ > 1 when N ≥ 2,

(4.35)

and in the case
(ii) for all ε > 0 and frequencies

Ω >
(2αN)

σ
σ−1 (σ − 1)

σ
, σ ≥ 2 when N = 1 and σ > 1 when N ≥ 2.

(4.36)

Regarding the quintic nonlinearity, more specifically, we have performed a test of
the estimates (4.26), (4.31) and (4.34) by fixing σ = 2, and ε = 1. With these choices,
restrictions (4.28)–(4.33) and (4.36) reduce to the very simple conditions Ω > α2/β

and Ω > 2α2. We expect all the estimates to be satisfied as thresholds due to the
increased strength of the power nonlinearity absorbing the contribution of the linear
part, even in the case of (4.26)-B of Corollary 4.5, which is not justified theoretically.
In Fig. 7(a) we have plotted the estimate (4.26)-A of Corollary 4.5, with triangles
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Fig. 7 (a) Power of breathers versus parameter β for supercritical nonlinearity σ = 2 in the HDNLS
system. Symbols correspond to numerical calculations, the dash-dotted (blue) line represents estimation
(4.31) and the dashed line (green) estimation (4.34). The estimate (4.26)-A of Corollary 4.5 corresponds
to the triangles (grey line), and the estimate (4.26)-B with the continuous (red) line. Parameters: α = 0.01,
Ω = ε = 1. (b) Power versus frequency Ω for supercritical nonlinearity σ = 2. Parameters: α = 0.5, β = 5
and ε = 1 (Color figure online)

(grey curve), and its case B with the continuous (red) curve. The dash-dotted (blue)
and dashed (green) lines correspond to (4.31) and (4.34), respectively. The numerical
power (symbols) was obtained varying β for a small hopping parameter α = 0.01 and
Ω = 1. Note that all the estimates are good, although (4.34) is better than (4.31) for
large β while (4.31) behaves better when β < 1/σ .

In Fig. 7(b) we have plotted the breather power against Ω choosing β = 5 and
α = 0.5. Condition (4.28) is fulfilled for Ω > 0.05 and condition (4.36) is fulfilled
for Ω > 0.5. In the latter region, since β is quite large, the estimate (4.34) behaves
clearly better than (4.31). It is interesting to realize that (4.26) is worse than (4.34)
for large enough frequencies.

4.2 Defocusing Case (α,β < 0) with Dirichlet Boundary Conditions. Solutions
ψn(t) = e−iΩtφn, Ω > 0

In the defocusing case the results on the theoretical estimates are restricted to fre-
quencies Ω > 4Nε. In this case, setting for convenience κ = −α > 0, λ = −β > 0,
the results of Theorem 2.5 state that for all σ > 0 the lower bound for the power of
the staggered breathers is given by the positive root R∗,d of the equation

λχ2σ + 2κNχ2 − (Ω − 4εN) = 0, σ > 0,N ≥ 1,Ω > 4εN, (4.37)

and the power of staggered breathers satisfies

R2∗,d < P , for all σ > 0,N ≥ 1,Ω > 4εN. (4.38)

In the defocusing case and cubic nonlinearity, the lower bound for the power is

Ω − 4εN

2κN + λ
< P , Ω > 4εN,N ≥ 1, σ = 1. (4.39)
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Fig. 8 Power of breathers
versus parameter σ in the
defocusing case. Squares
(pluses) correspond to the
numerical power found for
β = −1, α = −0.5
(β = −5, α = −0.01), while the
upper (lower) continuous line
represents estimate (4.40). Other
parameters: Ω = −2, ε = 0.25

The explicit estimate valid for σ > 1 is

[
1

2λ

(
Ω − 4εN − (2κN)

σ
σ−1

(λσ )
1

σ−1

σ − 1

σ

)] 1
σ

< P ,

σ > 1,N ≥ 1,Ω > 4εN + (2κN)
σ

σ−1

(λσ )
1

σ−1

σ − 1

σ
. (4.40)

The results of the numerical tests in the defocusing case are similar to those of the
focusing case and can be summarized in the following points:

• The theoretical estimates are always below the numerical power and approximate
quite well the nonlinear part of the contribution to the power.

• The lower bound (4.38) is always above the explicit estimate (4.40).
• Estimate (4.40) behaves better for small values of the hopping parameter α and

large exponents σ .

These observations are corroborated by the results of Fig. 8. Squares and the up-
per continuous curve correspond, respectively, to the numerical power and estimate
(4.38) for β = −1 and a hopping parameter α = −0.5. The estimate reaches values
much closer to the real power when fixing β = −5 and α = −0.01 (see pluses and
the lower continuous curve).

5 Conclusions

In the present work, we generalized the considerations of energy thresholds in the
setting of a DNLS model with generalized nonlinear (Hamiltonian) hopping terms.
Different types of bounds were provided for the power both for finite and for infinite
lattices, by using appropriate estimates for the linear coupling and nonlinear hop-
ping terms. A fixed-point method establishing the contractivity of an appropriately
defined operator was also used to establish that, for a given parameter set, there is a
critical power, below which it is not possible to sustain such nonlinear waveforms.
Finally, some dimension-dependent estimates were given based on the interpolation
inequality of the Gagliardo–Nirenberg type, in a spirit similar to the work of Wein-
stein (1999).
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Further improvements of the main theory have been considered and proved, ap-
preciating the interplay of the nonlinear and linear term contributions within the true
solitary wave solutions, taking into account their spatial localization. The obtained
bounds were tested numerically and in all the cases where the theory was expected
to be applicable, it was found that the numerical solutions satisfy the predicted norm
inequalities. This aspect also provides details of the parameter regimes (weak linear
coupling) which tend to saturate the corresponding theoretically obtained bounds.

We are leaving as an interesting open direction for a future work, to examine the
behavior of the energy bounds when the size of the lattice is varied. This question is
taking into account the effect of the transition from finite to infinite lattices, on the
localization properties of the solutions. This task could be based on a generalization
and use of the machinery developed in Penati and Paleari (2012), as well as of the
relevant localization estimates. Such a generalization could be of particular interest
in the case of multi-dimensional lattices.

It would be also interesting and relevant to examine how corresponding bounds
can be generalized to other classes of models, including ones of the nonlinear Klein–
Gordon or FPU type (or mixed ones), incorporating different types of onsite and
intersite nonlinearity. Especially useful, albeit arguably more difficult, it is to extend
the main strategy to continuous models. Such tasks will be considered in future pub-
lications.
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