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a b s t r a c t

We prove nonexistence of breathers (spatially localized and time-periodic oscillations) for a class of
Fermi–Pasta–Ulam lattices representing an uncompressed chain of beads interacting via Hertz’s contact
forces. We then consider the setting in which an additional on-site potential is present, motivated by
the Newton’s cradle under the effect of gravity. We show the existence of breathers in such systems,
using both direct numerical computations and a simplified asymptotic model of the oscillator chain,
the so-called discrete p-Schrödinger (DpS) equation. From a spectral analysis, we determine breather
stability and explain their translational motion under very weak perturbations. Numerical simulations
demonstrate the excitation of traveling breathers from simple initial conditions corresponding to small
perturbations at the first site of the chain. This regime is well described by the DpS equation, and is
found to occur for physical parameter values in granular chains with stiff local oscillators. In addition,
traveling breather propagation can be hindered or even suppressed in other parameter regimes. For
soft on-site potentials, a part of the energy remains trapped near the boundary and forms a surface
mode. For hard on-site potentials and large to moderate initial excitations, one observes a ‘‘boomeron’’,
i.e. a traveling breather displaying spontaneous direction-reversing motion. In addition, dispersion is
significantly enhanced when a precompression is applied to the chain. Depending on parameters, this
results either in the absence of traveling breather excitation on long time scales, or in the formation of a
‘‘nanopteron’’ characterized by a sizable wave train lying at both sides of the localized excitation.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The study of nonlinear waves in granular crystals is the object
of intensive research, both from a theoretical perspective and for
practical purposes, e.g. for the design of shock absorbers [1,2],
acoustic lenses [3] or diodes [4]. Due to the nonlinear interactions
between grains, several interesting types of localized waves can
be generated in chains of beads in contact. Solitary waves are the
most studied type of excitations and can be easily generated by
an impact at one end of a chain [5–9,1]. These solitary waves, in
the absence of an original compression in the chain (the so-called
precompression), differ from classical ones (i.e. KdV-type solitary
waves [10]) due to the fully nonlinear character of Hertzian contact
interactions. Indeed, their decay is super-exponential and their
width remains unchanged with amplitude [11,12].

Another interesting class of excitations consists of time-
periodic and spatially localized oscillations. Such waves may cor-
respond toAndersonmodes [13] in thepresence of spatial disorder,
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or to defect modes localized at an impurity in a granular chain un-
der precompression [14]. A different class of spatially localized os-
cillations that occur in the absence of defects consists of discrete
breathers, which originate from the combined effects of nonlinear-
ity and spatial discreteness (see the review [15]). Thesewaves exist
in diatomic granular chains under precompression [16–18], with
their frequency lying between the acoustic and optic phononbands
and can be generated e.g. throughmodulational instabilities. How-
ever, because precompression suppresses the fully nonlinear char-
acter of Hertzian interactions, these excitations inherit the usual
properties of discrete breathers, i.e. their spatial decay is exponen-
tial and their width diverges at vanishing amplitude, i.e. for fre-
quencies close to the bottom of the optic band [18].

For granular systems without precompression, the above dis-
cussion raises the question of existence of spatially localized os-
cillations. Defect modes induced by a mass impurity have been
numerically observed in unloaded granular chains [19,20], but
these excitations were found to occur only on short transients.
The existence of long-lived localized oscillations has been only re-
ported for granular chains including on-site potentials in addition
to the usual Hertzians interaction [21,22]. Models in this class de-
scribe e.g. the small amplitude waves in a classical Newton’s cra-
dle [23], which consists of a chain of beads attached to pendula
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Fig. 1. Left: prototypical Newton’s cradle. Right: stiff Newton’s cradle, consisting
of an array of clamped cantilevers decorated by spherical beads (displacements are
amplified for clarity).

(see Fig. 1, left). In [21], static and moving breathers were numer-
ically observed as a result of modulational instabilities of periodic
traveling waves, and extremely stable static breathers were gener-
ated from specific initial conditions. In addition, a reduced model,
the so-called discrete p-Schrödinger (DpS) equationwas derived as
an asymptotic model for small amplitude oscillations in the New-
ton’s cradle, and successfully reproduced the above localization
phenomena. The discrete breathers possess special properties both
in the original cradlemodel and the simplifiedDpS system, i.e. their
spatial decay is super-exponential and their width remains nearly
constant at small amplitude.

In this paper we extend the above results in two directions.
Firstly, we prove in Section 2 the nonexistence of time-periodic

spatially localized oscillations in uncompressed granular chains in
the absence of local potentials. This result seems surprising at a first
glance, because Hertzian models of granular chains fall within the
class of Fermi–Pasta–Ulam (FPU) lattices, which sustain discrete
breathers under some general assumptions on the interaction
potentials and particle masses (see [24] and references therein).
However these conditions do not hold for uncompressed granular
chains. Using a simple averaging argument, we show that the
non-attracting character of Hertzian interactions between grains
(repulsive under contact, and vanishing in the absence of contact)
precludes the existence of time-periodic localized oscillations,
both for spatially homogeneous or inhomogeneous chains.

Our second contribution concerns the case of (generalized)
Newton’s cradles, i.e. spatially homogeneous granular chains
incorporating a local harmonic or anharmonic potential (taking the
form of an even quartic polynomial). We analyze the existence and
qualitative properties of time-periodic and traveling breathers, and
the possible excitation of traveling breathers from an impact at the
end of a chain. We consider two different situations corresponding
respectively to the absence or presence of a precompression of the
chain, and yielding quite different dynamical behaviors. The case
without precompression is examined in Section 3,whereweobtain
the following results.

1. In Section 3.2, we use a Newton method to compute branches
of site- and bond-centered breathers parametrized by their fre-
quency ω > ω0 (ω0 being the linear frequency of the local os-
cillators). These branches bifurcate from the trivial equilibrium
when ω → ω0 (where analytical approximations of breather
profiles are also obtained), and can be continuedup to a strongly
nonlinear regime. The spectral stability of these breather solu-
tions is analyzed for some parameter values, and depends on
the type (and strength) of the local anharmonicity. In addition,
we observe a near-degeneracy in the spectrum (associatedwith
a so-called ‘‘pinning mode’’ [25]), resulting in a transition from
static to traveling breathers under very small perturbations.

Having obtained traveling breathers from small perturba-
tions of static ones, we study in Section 3.3 if they can arise from
much simpler initial conditions, and attempt to excite the first
site of a Newton’s cradle.

2. In Section 3.3.1, we identify four different dynamical regimes
depending on the parameter values (and time scales) consid-
ered. The first one corresponds to small initial excitations, and
long (generally finite) time intervals on which the dynamics
of Newton’s cradle and the DpS equation are similar (this is
in agreement with recent theoretical results of [26]). In this
regime, the main stress wave takes the form of a traveling
breather propagating almost freely along the chain. The sec-
ond regime is obtained for harmonic on-site potentials in the
limit of large amplitude perturbations, where soliton-like exci-
tations are observed, a situation reminiscent of [5,7]. In the third
regime, which occurs for soft on-site potentials and large to
moderate initial excitations, a significant part of the energydoes
not propagate and remains trapped near the boundary (forming
a so-called surface mode [27]), while a small amplitude travel-
ing breather is generated. The last regime corresponds to hard
on-site potentials and large to moderate initial excitations (or
sufficiently long time scales). In that case, the initial pertur-
bation produces a ‘‘boomeron’’ (direction-reversing traveling
breather) reminiscent of excitations previously obtained in par-
ticular integrable models (see [28] and references therein).

3. In Section 3.3.2, we examine possible experimental realizations
of these kinds of granular lattices and the related observation
of moving breathers after an impact (i.e. an initial excitation
of the first site of the chain). As it follows from the results
of Section 3.3.1, the DpS regime giving rise to (almost) freely-
propagating breathers is realized for small enough impact ve-
locities. Combining this result with suitable scaling arguments,
we deduce that moving breathers would not be observable in
practice in a classical Newton’s cradle acting under gravity. In
addition, we argue that reasonably simple mechanical systems
with stiff local oscillators could be tailored so that the DpS
regime takes place. As a prototype for which this situation oc-
curs,we consider the chain of identical clamped cantilevers rep-
resented in Fig. 1. Each cantilever is decorated by two spherical
beads attached to its center, and the beads of two successive
cantilevers are tangent at the ground state. Using a reduced os-
cillator chain model of this system (calibrated for realistic ma-
terial parameter values), we check that an impact on the first
cantilever generates indeed a moving breather.

Lastly, the case of a Newton’s cradle under precompression
is studied in Section 4. Since precompression adds effectively
a linear component to Hertzian interactions, this system falls
within a more standard class of models, the so-called mixed
Klein–Gordon/Fermi–Pasta–Ulam lattices [29]. Traveling or static
breathers close to envelope solitons of the (focusing) continuum
nonlinear Schrödinger (NLS) equation exist in such systems, at
least in the small amplitude limit and on long transients [30,31].
They can be easily generated from modulational instabilities,
starting from ‘‘well-prepared’’ initial data leading to similar
dynamics in the original lattice and the NLS equation. However,
for a highly localized initial disturbance of the chain, such as
the excitation of a single particle, no correspondence with the
NLS equation has been mathematically established up to now.
Whether traveling breathers may form or not after an impact
is therefore a nontrivial theoretical problem. Another interesting
question concerns the qualitative properties of the corresponding
breathers (if they form), and in particular the differences compared
to traveling breathers in uncompressed chains. In numerical
simulations, we observe the formation of an important dispersive
wave train and the generation or absence of a traveling breather
depending on the local potential. Traveling breather propagation
does not occur (at least on the timescale of the simulations) with
our choice of harmonic and soft on-site potentials, a property
that we (heuristically) relate to the growth rates of modes during
modulational instability. A traveling breather is observed in the
hard potential case, but is found much less localized than in the
absence of precompression. In addition, the main pulse is sitting
on a sizable non-decaying oscillatory tail extending at both sides,
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the ensemble forming a so-called ‘‘nanopteron’’ [32]. According
to our findings, the precompression introduces therefore a very
different phenomenology (compared to the case of Section 3),
where dispersion becomes much more dominant and different
effects of the local anharmonicity are observed.

To conclude this paper, we state in Section 5 some relevant
theoretical problems left open in this study, and discuss our results
from a more general perspective in connection with possible
experiments.

2. Nonexistence of breathers in FPU chains with repulsive
interactions

We consider an infinite chain of particles of masses mn > 0,
interactingwith their nearest neighbors via anharmonic potentials
Vn. This type of system (which can be thought of in general, i.e., for
unequal masses mn, as a spatially inhomogeneous FPU lattice)
corresponds to the Hamiltonian

H =


n∈Z

mn

2
ẋ2n + Vn(xn+1 − xn) (1)

where xn denotes the particle displacements from the ground state.
We consider interaction potentials Vn of the form

Vn(x) = Wn[(−x)+],

where (a)+ = max(a, 0), Wn ∈ C1(R+, R+), W ′
n(0) = 0 and

W ′
n(x) > 0 for all x > 0. The form of Vn implies that particle

interactions are repulsive under compression (i.e. for x < 0) and
unilateral (interaction forces vanishunder extension, i.e. for x > 0).

Moreover we assume

W ′

n(x) ≤ f (x) ∀x ∈ [0, r], ∀n ≥ n0, (2)

for some real constant r > 0, integer n0 and amonotone increasing
function f ∈ C0([0, r]) satisfying f (0) = 0. For example, these as-
sumptions are satisfied with f (x) = supn≥n0 W

′
n(x) if the functions

Wn are convex in [0, r] and belong to some finite set for n ≥ n0
(this is the case in particular for spatially periodic systems). An-
other example is given by Hertzian interactions

Wn(x) =
1

αn + 1
γn xαn+1,

where the coefficients γn, αn > 0 depend on material properties
and particle geometry. In that case one can choose f (x) = γ xα

(and r = 1) provided γn ≤ γ and αn ≥ α > 0 for all n ≥ n0.
The Hamiltonian (1) leads to the equations of motion

mnẍn = V ′

n(xn+1 − xn) − V ′

n−1(xn − xn−1), n ∈ Z. (3)

In what follows we show that under the above assumptions, the
only time-periodic breather solutions of (3) are trivial equilibria.
Due to the translational invariance of (1), breathers are defined
as time-periodic solutions which converge (uniformly in time)
towards translations xn = c± ∈ R as n → ±∞. This implies that
relative particle displacements vanish at infinity, i.e. one has

lim
n→±∞

∥xn − xn−1∥L∞(0,T ) = 0 (4)

for a T -periodic breather. In what follows, we prove in fact a
more general nonexistence result of nontrivial periodic solutions
vanishing as n → +∞.

Theorem 1. All time-periodic solutions of (3) satisfying

lim
n→+∞

∥xn − xn−1∥L∞ = 0 (5)

are independent of t and increasing with respect to n.
Proof. Let us consider a T -periodic solution of (3) and integrate (3)
over one period. This yields the equality

F̄n = F̄n+1,

where F̄n =
1
T

 T
0 V ′

n−1(xn(t)−xn−1(t)) dt is the average interaction
force between masses n − 1 and n. Consequently F̄n = F̄ is
independent of n.

Now let us check that F̄ vanishes thanks to the bound (2)
uniform in n. We have for all n

|F̄ | =
1
T

 T

0
W ′

n−1[(xn−1(t) − xn(t))+] dt

≤ ∥W ′

n−1[(xn−1 − xn)+]∥L∞ .

Taking into account (5) and (2), the above inequality yields for n
large enough

|F̄ | ≤ ∥f [(xn−1 − xn)+]∥L∞ = f [∥(xn−1 − xn)+∥L∞ ]

since f is increasing. It follows that

|F̄ | ≤ f (∥xn−1 − xn∥L∞) → 0 as n → +∞

hence F̄ = 0.
Now we use the fact that the interactions between particles

are repulsive, i.e. we have −V ′
n(x) = W ′

n[ (−x)+ ] ≥ 0. Since the
T -periodic functions Fn(t) = V ′

n−1(xn(t) − xn−1(t)) are negative,
continuous and satisfy

 T
0 Fn(t) dt = 0 as shown previously, we

have consequently Fn(t) = 0 for all t and n. Using (3), this implies
ẍn = 0 and thus xn is an equilibrium solution (due to time-
periodicity). Moreover one has xn ≥ xn−1 since Fn = 0. �

We note that the above arguments do not work if an on-site
potential is added to (1), because the average interaction forces
are no more independent of n. In the next section, we numerically
show the existence of breathers for such type of nonlinear lattices.

3. Breathers in uncompressed granular chains with local
potentials

3.1. Models and methods

In this section we consider an extension of the Hertzian chain
(1) incorporating local potentials. We analyze the existence and
qualitative properties of time-periodic and traveling breathers
(Section 3.2), and illustrate how to excite traveling breathers from
simple initial conditions (Section 3.3). Our approach is based both
on numerical and asymptotic methods.

In Section 3.2.1, the modified Gauss–Newton method intro-
duced in [33] is used to compute branches of breather solutions
bifurcating from the ground state. Their spectral stability is inves-
tigated in Section 3.2.2, in relation with their translational mo-
tion under perturbations. More precisely, their Floquet spectra
display (in addition to the usual double eigenvalue +1) an extra
pair of eigenvalues very close to unity. As an effect of this near-
degeneracy, we show that small perturbations of the breathers
along an associated pinning mode generate a translational motion
with negligible radiation, according to the process analyzed in [25].
In addition, the concept of Peierls–Nabarro barrier [34,35] allows
one to approximate the amount of energy required for the depin-
ning of stable breathers.

In addition to the direct approach described above, the main
qualitative properties of small amplitude breathers are also cap-
tured from the asymptotic limit of the DpS equation. In particular,
we derive quasi-continuum approximations of the breather pro-
files valid at small amplitude. These approximate breathers have
a compact support, which provides a reasonable approximation to
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the super-exponential decay of the exact breathers (in analogy to
what is known for the approximation of solitons in uncompressed
granular chains [5,11]).

Having observed the mobility of static breathers under small
perturbations in Section 3.2, we explore in Section 3.3 the excita-
tion of traveling breathers from a velocity perturbation at the end
of a semi-infinite chain. In Section 3.3.1, we show the relevance of
the DpS equation for describing (over long finite times) the trav-
eling breather propagation after a small amplitude initial pertur-
bation. In addition, we show the failure of the DpS equation for
capturing new types of waves (surface modes and boomerons)
showing up for anharmonic local potentials and (mainly) for larger
perturbations. In Section 3.3.2,we argue that the traveling breather
excitations obtained in Section 3.3.1 are relevant in the context of
impactmechanics, i.e. can be obtained in granular chainswith local
potentials for realistic parameter values.

3.1.1. Hertzian granular chains with on-site potentials
We consider a nonlinear lattice with the Hamiltonian

H =


n

1
2
ẏ2n + W (yn) + V (yn+1 − yn), (6)

where

V (r) =
2
5
(−r)5/2+ . (7)

The system (6) corresponds to a chain of identical particles in
the local potential W , coupled by the classical Hertz potential
V describing contacts between smooth non-conforming surfaces.
Unless explicitly stated, the on-site potential W will be chosen
harmonic with

W (y) =
1
2
y2. (8)

In that case, the dynamical equations read

ÿn + yn = (yn−1 − yn)
3/2
+ − (yn − yn+1)

3/2
+ . (9)

Fig. 1 depicts two examples of such systems. In practical situations,
the assumption of a local harmonic potential implies that the
model will be valid for small amplitude waves and suitable time
scales on which higher order terms can be neglected. In order to
capture higher order effects, different parts of our analysis will be
extended to symmetric anharmonic local potentials

W (y) =
1
2
y2 +

s
4
y4, (10)

where the parameter smeasures the degree of anharmonicity.
In the work [21], long-lived static and traveling breather so-

lutions of (9) have been numerically observed, starting from
suitably chosen localized initial conditions, or from small pertur-
bations of unstable periodic traveling waves. However, the clas-
sical result of MacKay and Aubry [36] proving the existence of
static breathers near the anti-continuum limit does not apply in
that case. Indeed, if Hertzian interactions forces are canceled (or
equivalently, if one considers breathers in the limit of vanish-
ing amplitude), one obtains an infinite lattice of identical linear
oscillators, and the nonresonance assumption of Ref. [36] is not
satisfied. The anti-continuum limit can be only used for models
incorporating anharmonic on-site potentials, and under the as-
sumption of weak Hertzian interactions whose applicability is
rather limited [37]. Moreover, other existence proofs based on spa-
tial dynamics and the center manifold theorem [38] do not apply,
due to the fully-nonlinear character of interaction forces (the same
remark holds true in the case of traveling breathers [39]). Varia-
tional tools [24] may be suitable to obtain existence proofs in this
context, but this question is outside the scope of the present paper,
where we chiefly resort to numerical and asymptotic methods.

In the following section, we recall the relation between (9) and
the asymptotic model given by the DpS equation [21].
3.1.2. The discrete p-Schrödinger limit
Small amplitude solutions of system (6)–(8) can bewell approx-

imated by an equation of the nonlinear Schrödinger type, namely
the discrete p-Schrödinger (DpS) equation with p = 5/2

iv̇n = (vn+1 − vn)|vn+1 − vn|
p−2

− (vn − vn−1)|vn − vn−1|
p−2. (11)

The most standard model reminiscent of this family of equa-
tions is the so-called discrete nonlinear Schrödinger (DNLS) equa-
tion, studied in detail in a number of different contexts, including
nonlinear optics and atomic physics over the past decade [40].
However, the DpS equation is fundamentally different in that it
contains a fully nonlinear inter-site coupling term, corresponding
to a discrete p-Laplacian.

Tomake the connectionwith theDpS equationmore precise,we
sum up some basic elements of the analysis of [21]. Let us consider
the lattice model (9) and the DpS equation

2iτ0Ȧn = (An+1 − An)|An+1 − An|
1/2

− (An − An−1) |An − An−1|
1/2, (12)

where τ0 =
5(Γ ( 1

4 ))2

24
√

π
≈ 1.545 and Γ denotes Euler’s Gamma func-

tion. Given a solution of (12) and ϵ > 0 small enough, one obtains
an approximate solution of (9)

yappn (t) = 2ϵ Re[An(ϵ
1/2t) eit ]. (13)

The approximate solution (13) and amplitude Eq. (12) have been
derived in [21] using amultiple-scale expansion. According to [26],
for initial conditions of the form yn(0) = 2ϵ Re [An(0)] + O(ϵ3/2),
ẏn(0) = −2 ϵ Im [An(0)] + O(ϵ3/2) with ϵ ≈ 0, this approxima-
tion is O(ϵ3/2)-close to the exact solution of (9) at least up to times
t = O(ϵ−1/2) (see also numerical results of [21] comparing the
DpS approximation and exact solutions of (9)). Moreover, for some
family of periodic travelingwave solutions of the DpS equation, the
ansatz (13) is O(ϵ3/2)-close to exact small amplitude periodic trav-
eling waves of (9) [21].

Lastly, it is interesting to mention that the DpS equation
depends on the terms of (9) up to order O(|y|3/2) (see [21], section
2.1). It follows that this equation remains unchanged for smooth
anharmonic on-site potentialsW (y) =

1
2 y2 +O(|y|3), because the

associated extra nonlinearity is at least quadratic. Consequently,
the addition of a local anharmonicity does not change the dynamics
of (9) for small amplitude waves, on the time scales governed by
the DpS equation.

3.2. Existence and properties of static and traveling breathers

3.2.1. Bifurcations of static breathers from the ground state
The work of [21] illustrated the existence of time-periodic and

spatially localized solutions of the DpS equation. Figs. 2 and 3
(top left panels) display the profiles of spatially antisymmetric or
symmetric breather solutions of the DpS Eq. (11). These are sought
by using the standard stationary ansatz for DNLS type equations of
the form vn = exp(iµt) un with µ > 0 and un ∈ R. The resulting
coupled nonlinear algebraic equations read

− µun = (un+1 − un)|un+1 − un|
1/2

− (un − un−1)|un − un−1|
1/2 (14)

and are solved via a fixed point iteration of the Newton–Raphson
type, for free end boundary conditions (Eq. (14) is considered for
n = 1, . . . ,N with u0

def
= u1 and uN+1

def
= uN ).

Note that Eq. (11) has a scale invariance, since any solution
vn(t) generates a one-parameter family of solutions a vn(|a|1/2 t),
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Fig. 2. Top left panel: spatially antisymmetric solution un of the stationary DpS Eq. (14), computed numerically for µ = 1 (marks). This solution is compared to the quasi-
continuum approximation u(1)

n defined by Eq. (18) (continuous line). The other graphs compare a bond-centered breather yn solution of (9) computed numerically (marks)
and its quasi-continuum approximation y(1)

n (continuous line). The top right plot corresponds to a small amplitude breather (ωb = 1.01), and the bottom plot to a more
strongly nonlinear regime (ωb = 1.1). Particle positions are plotted at the instant of maximal amplitude.
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Fig. 3. Top left panel: spatially symmetric solution un of the stationary DpS Eq. (14), computed numerically for µ = 1 (marks). This solution is compared to the quasi-
continuum approximation u(2)

n defined by Eq. (19) (continuous line). Top right panel: small amplitude site-centered breather yn solution of (9) computed numerically for
ωb = 1.01 (marks) and its quasi-continuum approximation y(2)

n (continuous line). Particle positions are plotted at the instant of maximal amplitude. Bottom left panel: same
computation for ωb = 1.1, corresponding to a more strongly nonlinear regime. In the bottom right plot, the breather computed numerically for ωb = 1.1 is compared to its
evolution at t = 100 Tb (marks).
a ∈ R. Thanks to this scale invariance, the whole families of
antisymmetric and symmetric breathers canbe reconstructed from
the case µ = 1 of (14). In particular, breather amplitudes are
∝ µ2 and the breather width remains unchanged when µ → 0,
a property that strongly differs from the broadening of DNLS
breathers at small amplitude (see e.g. [41], Section 3).

In what follows we approach the two breather profiles using
a quasi-continuum approximation. Fixing µ = 1 and introducing
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wn = (un+1 − un)|un+1 − un|
1/2, Eq. (14) becomes

wn+1 − 2wn + wn−1 + wn|wn|
−1/3

= 0, (15)

where the nonlinear coupling has been linearized (at the expense
of having an on-site nonlinearity non-differentiable at the origin).
The spatial profiles of Figs. 2 and 3 suggest to use the so-called
staggering transformation wn = (−1)nf (n), which yields

f (n + 1) − 2f (n) + f (n − 1) = −4f (n) + f (n)|f (n)|−1/3. (16)

Nowwe look for an approximate solution F of (16). For this purpose
we use the formal approximation F(n ± 1) ≈ F(n) ± F ′(n) +
1
2F

′′(n), in same the spirit as the approximations of soliton profiles
performed in Ref. [5] (the accuracy of this approximation will be
checked a posteriori by numerical computations).1 This leads to the
differential equation

F ′′
= −4F + F |F |

−1/3, (17)

which possesses a family of compactly supported solutions F(x) =

±g(x + φ), where

g(x) =


3
10

3

cos6
 x
3


for |x| ≤

3π
2

, g = 0 elsewhere.

Replacing f by its approximation F and performing appropriate
choices of sign and spatial shifts in F , one obtains the symmetric
approximate solutions of (15)

w(1)
n = (−1)n+1g(n), w(2)

n = (−1)n+1g

n +

1
2


.

The caseµ = 1 of (14) yields un = wn−1−wn, thereforewe get the
following quasi-continuum approximations of the antisymmetric
and symmetric breather profiles

u(1)
n = (−1)n [g(n) + g(n − 1)] , (18)

u(2)
n = (−1)n


g


n +

1
2


+ g


n −

1
2


. (19)

The first graphs of Figs. 2 and 3 show the excellent agreement
of these approximations with the numerical solutions of the
stationary DpS equation. Returning to the ansatz (13) and the
time-dependent (non-renormalized) DpS Eq. (12), we obtain
approximate breather solutions of (9) taking the form

y(s)
n (t) = 2ϵ u(s)

n cos(ωbt), ωb = 1 +
ϵ1/2

2τ0
, s = 1, 2. (20)

1 Note that wn corresponds to a spatially modulated binary oscillation, and a
continuum approximation is obtained for its envelope, whereas the continuum
approximation of [5] was performed on the full soliton profiles.
It is interesting to observe that approximation (20) is unaffected by
smooth on-site nonlinear terms for ϵ ≈ 0, since we have noticed
that the DpS equation remains unchanged.

In what follows we compare the above approximations with
breather solutions of (9) computed numerically for free end
boundary conditions (Eq. (9) is considered for n = 1, . . . ,N with
y0

def
= y1 and yN+1

def
= yN ). According to the approximate form (20),

we expect to obtain families of site- and bond-centered solutions
bifurcating from the ground state when ω → 1+.

Let us denote Yn = (yn, ẏn). We use an adapted Gauss–Newton
method described in [33] to compute zeros Yn(0) = (yn(0), 0) of
the time-Tb map of the flow of (9), where Tb =

2π
ωb

denotes the
breather period. These initial conditions correspond to breathers
even in time. An example of computation of a breather with
frequency ωb = 1.1 is shown in Fig. 3 (the initial guess used
for the Newton method is the site-centered approximate breather
solution derived from the DpS equation). The bottom right panel
of Fig. 3 compares the initial breather positions computed by the
Newton method and their evolution at t = 100 Tb, which shows
that the breather oscillations are extremely stable. The super-
exponential spatial decay of the breather is shown in Fig. 4 (see [37]
for a recent analytical proof).

Using the above numerical scheme and path-following, we
compute branches of breather solutions parametrized by their
frequency ωb > 1. At the end of the Newton iteration, we get a
relative residual error

ϵres =
∥{Yn(Tb) − Yn(0)}n∥∞

∥{Yn(0)}n∥∞

∼ 10−11,

and an incremental error

ϵinc =
∥{y(k+1)

n (0) − y(k)
n (0)}n∥∞

∥{y(k+1)
n (0)}n∥∞

∼ 10−8

corresponding to the relative variation of particle positions be-
tween the k-th and (k + 1)-th Newton iterates.

We obtain two branches of breather solutions of (9) with
different symmetries. They consist of bond-centered breathers,
i.e. spatially antisymmetric solutions satisfying y−n+1 = −yn
(Fig. 2) and site-centered breathers (Fig. 3). The latter possess
subtle symmetry properties. Since the Hertz potential is non-
even, Eq. (9) is not invariant by the symmetry Syn := y−n.
However, the set of Tb-periodic solutions of (9) is invariant under
the transformation S ′yn(t) = −y−n(t + Tb/2). The site-centered
breathers of (9) are left invariant by S ′ and not by S (their
asymmetry under S increases with ωb, as shown in Fig. 3). In
contrast, the DpS equation admits both symmetries S and S ′,
which both leave the site-centered DpS breathers invariant. These
different types of symmetries are illustrated by Figs. 2 and 3,
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which compare the approximations (20)with breather solutions of
(9) computed by the Newton method. While approximation (20)
is excellent at small amplitude (case ωb = 1.01), its accuracy
deteriorates in a more strongly nonlinear regime (case ωb = 1.1).

More details on the continuation of discrete breathers in ωb
are shown in Fig. 4 (right panel), which compares the maximal
amplitude of the bond-centered and site-centered breather
solutions of (9) when ωb is varied (the continuation is performed
for ωb ∈ (1, 2]). Both solutions bifurcate from yn = 0 when
ωb → 1+, and their amplitude increases with ωb.

More generally, considering system (6) with the local anhar-
monic potential (10) and choosing s ∈ [−1, 1], we obtain branches
of site-centered and bond-centered breathers bifurcating from the
origin whenωb → 1+ (results not shown). The persistence of both
types of symmetries is due to the evenness ofW .

In what follows we study in more detail the energy barrier sep-
arating site-centered and bond-centered breathers. As illustrated
below in Section 3.2.2, this allows us to approximate the so-called
Peierls–Nabarro energy barrier, which corresponds to the amount
of energy required to put a stable static breather intomotion under
a momentum perturbation.

A notion of energy barrier separating discrete breathers is
usually defined as follows (cf. also [35]). From (18)–(20), one can
deduce a family of approximate static breather solutions of (6)–(10)

yn(t) = 2ϵ

g


n +

1
2

− Q


+ g

n −

1
2

− Q


×(−1)n cos(ωbt), (21)

where ωb = 1 +
ϵ1/2

2τ0
and Q ∈ R (the cases Q = 0 and Q = 1/2

corresponding respectively to site-centered and bond-centered
breathers). According to the work of [35], approximate traveling
breather solutions of (6)–(10) can be obtained from (21). Their
dynamics is described by an effective Hamiltonian, whose critical
points correspond to site-centered and bond-centered breathers
having the same area A =

 Tb
0


n ẏ

2
n dt. The absolute energy

difference ẼPN between the two breather solutions provides an
approximation of the Peierls–Nabarro barrier. However, because
the latter appears to be very small in system (6)–(10) (a
phenomenon thatwill be illustrated in Section 3.2.2), its evaluation
requires a very precise computation of breather solutions. The
definition of ẼPN yields additional numerical difficulties, due to
the fact that the two breather frequencies have to be retrieved
from a given area A. Due to these difficulties, we shall use a
more straightforward approach. We define (following Ref. [34])
the approximate Peierls–Nabarro barrier EPN = |Esc − Ebc | as the
absolute difference between the energies Esc , Ebc of site- and bond-
centered breathers having the same frequency.

We obtain extremely small values of EPN both for harmonic
and anharmonic on-site potentials, even quite far from the small
amplitude regime. This result is illustrated by Fig. 5 for s = −1/6,
s = 0 and s = 1. For small amplitude breathers (ωb ≈ 1.01
in our computations), the different values of s yield comparable
values of EPN , of the order of 10−14

− 10−15. We find that EPN
increases with the breather amplitude but remains very small in
our parameter range (e.g. EPN is close to 10−4 for ωb = 1.5 and
s = −1/6). The harmonic case yields even much smaller barriers
(by 3–4 orders of magnitude for ωb = 1.3). As shown by Fig. 5,
the smaller relative energy difference between site-centered and
bond-centered breathers is also achieved in the harmonic case.

In order to correctly interpret the results of Fig. 5, we should
stress that our computation of EPN yields sometimes only a
rough approximation, but captures nevertheless the correct orders
of magnitude (which is our objective here, since the above
definition of EPN provides itself only an approximation of the true
Peierls–Nabarro barrier). This originates from the finite precision
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of the breather computation and the very small values of the
energy ratio EPN/Ebc (or equivalently EPN/Esc) that we obtain. If
one approximates the numerical error on breather positions by the
incremental error ϵinc, then the relative error made on EPN is of
order ϵinc Ebc/EPN . Since we get ϵinc ∼ 10−8, the relative error on
EPN is of order unity in the worst case of Fig. 5 (s = 0, ωb = 1.5).

The above results indicate that extremely small perturbations of
the breathers are capable of putting them into motion (even more
critically for harmonic on-site potentials), a phenomenon that will
be illustrated in the next section.

3.2.2. Breather stability and mobility
In this section we examine the stability properties of spatially

antisymmetric and symmetric breather solutions of (11) and (6),
and link these properties with the existence of traveling breather
solutions. The linear (spectral) stability of breather solutions of (11)
is investigated by means of the perturbation [40]:

vn(t) = exp(iµt)

un +


an exp(λt) + b⋆

n exp(λ
⋆t)


(22)

where un is a spatially symmetric or antisymmetric solution of (14)
homoclinic to 0. The resulting linear problem for the eigenvalue λ
and the eigenvector (an, bn)T (where T denotes transpose) is solved
by standard numerical linear algebra solvers and the results are
depicted by means of the spectral plane (λr , λi) of the eigenvalues
λ = λr + iλi. Note that in this Hamiltonian system, whenever λ
is an eigenvalue, so are λ⋆, −λ and −λ⋆. In addition, the breather
stability properties remain qualitatively unchanged for all values
of µ. This follows from the scale invariance of (11) pointed out
in Section 3.2.1, which also implies the linear dependence of
the eigenvalues λ on µ. However, we note in passing that this
simplification is obviously not valid for the model (9).

From the bottom panels of Fig. 6, we can infer that spatially
antisymmetric solutions are spectrally stable (due to the absence
of eigenvalues of non-vanishing real part) and therefore should
be structurally robust, a result confirmed by our direct numerical
simulations (data not shown here).

On the other hand, the stability and associated dynamical prop-
erties are more interesting in the case of the site-centered solution
of Fig. 7. In this case, we can observe the presence of a real eigen-
value pair. As can be seen in the bottom panel of Fig. 7, the real part
of the relevant eigenvalue pair (which corresponds to the instabil-
ity growth rate) grows linearly with the eigenvalue parameter µ,
inducing a progressively stronger instability for larger amplitude
solutions. The dynamical manifestation of this instability is illus-
trated in Fig. 8. Here we perturb the dynamically unstable solution
of the right panel of Fig. 7 by a uniformly distributed random per-
turbation (of amplitude 0.01). The projection of this random field
on the unstable eigenvector of the site centered mode excites the
manifestation of the dynamical instability of this modewhich is, in
turn, illustrated in the space–time evolution (where the colorbar
corresponds to the field |vn(t)|2) of Fig. 8. Clearly, the instability of
the site-centered mode is associated with a ‘‘translational’’ eigen-
mode of the linearization problem, whose excitation induces the
motion of the localized mode.

Having determined the spectral stability of bond-centered and
site-centered breather solutions in the DpS equation, we now
consider the same problem for their analogues in the original
lattice (6), including in our analysis the effect of a possible addition
of a local anharmonic potential (10).

We have computed the Floquet spectrum of (6)–(10) linearized
at the bond-centered breather and the site-centered breather, for
different values of the breather frequency ωb ∈ (1, 2] and the an-
harmonicity parameter s ∈ [−1, 1]. The Floquet spectrum includes
a quadruplet of eigenvalues close to+1 and eigenvalues on the unit
circle accumulating near e±i2π/ωb . The spectral properties of these
discrete breathers differ from usual ones [42] for several reasons.
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Firstly, no bands of continuous spectrum are present on the unit
circle for the infinite chain. This is due to the fact that system (9)
linearized at yn = 0 (the limit of a breather solution at infinity)
consists of an infinite chain of uncoupled identical linear oscilla-
tors, and thus the phonon band reduces to a single frequency, equal
to unity in the present case. Secondly, another nonstandard prop-
erty originates from the quadruplet of eigenvalues close to+1. Due
to the Hamiltonian character of (9), +1 is always at least a double
eigenvalue of the Floquetmatrix. In addition, we always find an ex-
tra pair of eigenvalues in the immediate vicinity of+1 correspond-
ing to a pinning mode (see below). This contrasts with the case of
Klein–Gordon lattices, where this situation is a codimension-one
phenomenon, occurring near critical values of the coupling con-
stant and for particular classes of on-site potentials [25,43].

In what follows we describe the evolution of the quadruplet of
eigenvalues close to +1 for ωb = 1.1 and s ∈ [−1, 1]. The follow-
ing figures display the moduli and arguments of these eigenval-
ues for the bond-centered breather (Fig. 9) and the site-centered
breather (Fig. 10). For the bond-centered breather, a pair of Floquet
multipliers λ, λ−1 emerges from the unit circle after a collision at
+1, for s > sb0 ≈ 0.26. For the site-centered breather, a pair ofmul-
tipliers λ, λ−1 (with λ > 1) exists for s < ss0 ≈ 0.05, and enters
the unit circle for s > ss0 after a collision at +1.

From the above spectral study, one can infer that for harmonic
on-site potentials (i.e. s = 0) and ω = 1.1, the site-centered
breather is weakly unstable and the bond-centered breather
is spectrally stable. These results agree with the above results
obtained for the DpS equation. This provides a consistent picture,
given that the DpS equation correctly approximates breather
profiles of amplitudes ϵ = O((ωb −1)2) for ωb ≈ 1 (Section 3.2.1).
The DpS admits weakly unstable site-centered and stable bond-
centered breather solutions, and approximates the dynamics of (9)
for O(ϵ) initial data on times of order O(ϵ−1/2) [26]. Hence, we
expect a parallel to the instability of site-centered modes of the
DpS dynamics in Eq. (9). Note that these instabilities are extremely
small for ωb close to 1, because the instability of the site-centered
breather is already very weak at the renormalized (slow) time-
scale of the DpS equation (see Fig. 7), and becomes O(ϵ1/2) times
weaker at the level of (9) for a breather with amplitude ϵ.

The above picture persists for s ≈ 0, but the site-centered
and bond-centered breathers display a change of stability at the
two different critical values s = sb,s0 > 0 (ss0 being quite small),
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Fig. 10. Same plot as in Fig. 9, for the site-centered breather with ωb = 1.1.

after which their dynamical stability differs from the stability of
the DpS breathers. It would be interesting to analyze the possible
bifurcations of new types of time-periodic breathers near these
critical values of s (perhaps subcritical pitchfork bifurcations at the
points s = sb0, s = ss0), and this problem will be considered in a
future work.

In what followswe illustrate the effect of the additional Floquet
eigenvalues close to +1 on the breather dynamics, considering
the case ωb = 1.1 and s = 0. Fig. 11 compares an eigenvector
associated with one of these eigenvalues and the renormalized
discrete gradient

gn =
yn+1(0) − yn−1(0)

n
|yn+1(0) − yn−1(0)|2

,

which reveals that the two profiles are very close. The associated
mode will thus be referred to as a translation mode or pinning
mode, and the effect of a perturbation along its direction is to
shift the breather center [43]. This is precisely the type of mode
associated with the instabilities reported in Figs. 9 and 10 for s ∈

[−1, 1].
The existence of this mode has the effect of enhancing the

breather mobility. To illustrate this, we perturb at t = 0 the
velocity components of a stationary breather, adding the discrete
gradient gn multiplied by a velocity factor c. The kinetic energy
imprinted to the lattice is then c2/2.We consider below the energy
density at the n-th site, which is defined from (6):

en =
1
2
ẏ2n + W (yn) +

2
5
(yn − yn+1)

5/2
+ . (23)

Fig. 12 shows the energy density plot in the system of Eqs. (6)–(8),
for a bond-centered breather (with frequencyωb = 1.1) perturbed
with c = 2 · 10−4. This perturbation results in a translational
motion of the breather at an almost constant velocity with neg-
ligible dispersion. A nearly identical figure is obtained for the site-
centered breather having the same frequency (result not shown).
These results illustrate the strong mobility of discrete breathers
in the present model. They are consistent with the approximation
EPN of the Peierls–Nabarro barrier computed previously, since we
found EPN ≈ 1.77 · 10−11 for s = 0 and ωb = 1.1 (see Fig. 5). The
above momentum perturbation increases the kinetic energy of the
bond-centered breather by c2/2 = 2 · 10−8, which is well-above
EPN .

To describe the effect of breather perturbations below the
Peierls–Nabarro barrier, it is convenient to consider the breather
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energy center

X =

n′
+m

n=n′−m
nen

n′+m
n=n′−m

en

(24)

with n′ being the location of the maximum energy density of the
breather and m > 0 an integer which accounts for the width of
the breather (we have fixed m = 5). Fig. 12 displays X(t) for
c = 3 · 10−6, i.e. c2/2 = 4.5 · 10−12 lying below EPN . In that
case, only the unstable site-centered breather is able tomove along
the lattice (it is able to jump 2 sites but gets pinned subsequently).
For the stable bond-centered breather, a transition from pinning
to mobility is obtained for c > cc ≈ 6.19 · 10−6. The value of the
Peierls–Nabarro barrier resulting from dynamical simulations is
thus c2c /2 ≈ 1.92·10−11, which is quite close to the approximation
EPN computed previously.

The same features can be observed for anharmonic on-site po-
tentials, depending on the stability or instability of the site- or
bond-centered breather. More precisely, for s > sb0, arbitrar-
ily small perturbations along the pinning mode put the unstable
bond-centered breather into motion, whereas there is a perturba-
tion threshold for bond-centered breather mobility when s < sb0.
Similarly, for s < ss0, arbitrarily small perturbations along the pin-
ningmode give rise to site-centered breathermotion, and a pertur-
bation threshold for site-centered breathermobility is foundwhen
s > ss0. In addition, in the absence of a mobility threshold, the es-
cape time of themoving breather diverges when the size of pertur-
bation goes to 0.
3.3. Waves resulting from a localized perturbation

3.3.1. Traveling breathers, boomerons and surface modes
Having demonstrated themobility of breathermodes in theDpS

equation, in direct analogy with the dynamics of the full oscillator
model, we attempt the excitation of the first site of a Newton’s
cradle and the associated DpS chain, and observe the ensuing
space–time evolution.

Consider the Eq. (12) on a semi-infinite lattice with n ≥ 1 and
a free end boundary condition at n = 1. We numerically compute
the solution of (12) with the initial condition

A1(0) = −i, An(0) = 0 for n ≥ 2. (25)

It can be clearly seen in Fig. 13 that the result is the formation
of a localized excitation which is traveling robustly through the
chain. This is the traveling breather resulting from the mobility
of the discrete breathers that we considered before. In addition
to this strongly localized excitation, a small amplitude dispersive
wave train having a rather complex structure is emitted from the
boundary. Until relatively large values of τ , the modulus of the so-
lution displays small variations within an extended region which
is broadening with time (shaded area in the left panel of Fig. 13)
and decays rather sharply when n is further increased (see the so-
lution profile in the right panel of Fig. 13). We cannot consider
this excitation to be a surface mode of the chain [27], as its profile
is fairly extended and decays slowly with time. It is rather remi-
niscent of a self-similar spreading modulated periodic pattern, as
shown by the space–time diagram of Fig. 14. At the sharp edge of
this regular pattern, high frequency spatial oscillations are gener-
ated in a region which is initially small but become thicker as time
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increases. This behavior is reminiscent of dispersive shocks stud-
ied in the FPU model and other nonlinear dispersive Hamiltonian
systems (see [44,45] and references therein). Additional small am-
plitude traveling breathers eventually escape from the dispersive
wave train, as shown in the right panel of Fig. 13. In addition, be-
tween the large amplitude traveling breather and the highly oscil-
latory region one observes a slowly modulated periodic pattern of
very small amplitude. Its structure is detailed in the right panels of
Figs. 13 (inset) and 14. This pattern appears nearly stationary on
the timescale of the simulation, as shown in Fig. 14 (left plot).

According to the above numerical observations, the initial per-
turbation generates a rather complex dynamics which has yet to
be explained. Themodulated periodicwave following the traveling
breather and themacroscopic evolution of thehighly oscillatory re-
gion might be described in the framework of Whitham’s equation
[45], using periodic traveling wave solutions of the DpS equation
explicitly computed in [21].

For all ϵ > 0 small enough, the above solution of DpS corre-
sponds to an approximate solution of (9) given by (13), satisfying
yappn (0) = 0, ẏapp1 (0) = 2 ϵ + O(ϵ3/2), ẏapp2 (0) = O(ϵ3/2) and
ẏappn (0) = 0 for n ≥ 3. Fig. 15 compares this approximate solu-
tion and the solution of (9) with initial condition

yn(0) = 0, ẏ1(0) = 2ϵ, ẏn(0) = 0 for n ≥ 2 (26)

for a small value of ϵ. One can see that the DpS equation and the
full oscillator model give rise to similar dynamics, i.e. the initial
impulse splits into a traveling breather followed by a small oscil-
latory tail and a dispersive wave train. Note that the profiles of
the exact and approximate solutions are quite close over a long
transient, but the traveling breather velocity is slightly overesti-
mated by the DpS approximation (13). Fig. 16 (left panel) describes
the energy density in Newton’s cradle after the initial perturbation
(26). The propagation of a localized excitation at an almost con-
stant velocity is clearly visible, as well as the broadening and decay
of the dispersivewave train emitted from the boundary. Themodu-
lated periodic patterns previously obtained with the DpS equation
correspond (via the ansatz (13)) to modulated periodic traveling
waves propagating in Newton’s cradle. Their structure is detailed
in Fig. 16 (right panel). The different strips correspond (from top
to bottom) to the traveling breather excitation followed by a small
oscillatory tail, and the dispersivewave train including a highly os-
cillatory region followed by slowly modulated periodic traveling
waves. As we previously conjectured, different parts of the wave
train might be described (viaWhitham’s equation) as modulations
of the periodic traveling waves analyzed in [21].

The DpS approximation becomes inaccurate when the initial
velocity is not small, but the phenomena described above are
still observed provided the initial velocity is not too large or for
sufficiently long chains. In addition, the dynamics at high initial
velocity displays newdynamical features illustrated by Figs. 17 and
18 (for ẏ1(0) = 106 and a chain of 1400 particles). At the early
stage of the dynamics (i.e. over a few periods of local oscillations),
a wave train is emitted from the boundary, with two soliton-
like excitations appearing at its edge (Fig. 17). This is reminiscent
of the phenomenology described in [7,5]. As the localized waves
propagate from one site to the next, their amplitudes get slowly
modulated (for the above initial velocity, the period of internal
oscillations is around 170 times larger than the inverse wave
velocity). The two pulsating solitary waves correspond in fact
to a traveling breather whose internal oscillations are very slow
compared to its velocity. Fig. 18 illustrates the traveling breather
profile, displaying two different nearly-symmetric configurations
at different times. One can notice important differences with the
case of small initial velocities detailed in Fig. 15. In the present
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Fig. 15. Left: comparison between the solution of (9)–(26) (black curve) and its approximation given by (12)–(13)–(25) (blue curve), for a small amplitude initial excitation
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is referred to the web version of this article.)
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case, the breather has a much broader spatial extent and displays
a different velocity profile. In addition, the localized excitation
is followed by a larger (and more irregular) oscillatory tail, in
which steepenings of wave crests give birth to new soliton-like
excitations and dispersive shocks.

In what follows we analyze the effect of considering the local
anharmonic potential (10). Due to the smoothness of W , the DpS
equation remains unchangedwith respect to the harmonic case, as
observed in Section 3.1.2. Consequently, the dynamics of (9) after
the impact is expected to remain unchanged for small excitations,
on the time scales given in Section 3.1.2. However, it is interesting
to examine possible additional effects of anharmonicity occurring
on longer time scales or for large amplitude excitations. For exam-
ple, a trapping of large amplitude traveling breathers can occur in
Klein–Gordon lattices [34,35], due to the Peierls–Nabarro energy
barrier separating site-centered and bond-centered breathers.

In order to characterize the breather motion we consider
the traveling breather energy center X(t) defined by (24). The
average velocity of the traveling breather is computed as the
slope of the linear least squares approximation of the function
X(t), taking only into account the points for which the traveling
breather is sufficiently far from the boundary in order to eliminate
boundary effects. Fig. 19 displays the traveling breather velocity
and maximum energy density (computed from (23)) as a function
of the initial velocity ẏ1(0), for different values of the parameter
s ≤ 0. As expected, the different graphs are very close at small
initial velocity where the DpS equation drives the dynamics. In this
regime, the traveling breather velocity scales as the square root of
the initial velocity, as it follows from the ansatz (13).

Discrepancies with the DpS approximation appear at larger
velocities depending on the magnitude of s. In particular, for
s < 0 the graphs of Fig. 19 are interrupted above some critical
velocities, because the solution blows-up in finite time when
the initial velocity exceeds some threshold. Below this value, the
anharmonicity of the on-site potential with s < 0 decreases the
breather velocity. The energy of the traveling breather (including
its kinetic energy) becomes much smaller because a part of the
initial energy remains trapped in the form of a surface mode
located near n = 1. The possibility of exciting a surface mode
by an impact was already pointed out in reference [46], for a
mixed Klein–Gordon-FPU chain with a sinusoidal local potential,
and a Morse interaction potential instead of the fully-nonlinear
Hertzian interactions. This phenomenon is illustrated in Fig. 20 for
s = −0.7, where the initial perturbation ẏ1(0) = 0.94 generates
a surface mode and a traveling breather of smaller amplitude. In
a companion paper [37], we have numerically computed these
surface modes using the Newton method. For s < 0, we have
found spectrally stable surface modes with frequencies ωs ≈ 1
lying belowunity (although linear instabilities occur at low enough
frequencies). When ωs → 1, their energy and amplitude vanish,
opening the possibility of exciting such modes for arbitrarily small
initial velocities of the first particle.

Note that the above-mentioned blow-up phenomenon is due
to potential (10) with s < 0 and does not occur for W (y) =

1 − cos y, which corresponds e.g. to the gravitational potential
acting on the usual Newton’s cradle. In the latter case, the
dynamics resulting from the impact becomes rather similar to
the phenomena studied in [46]. For sufficiently large impact
velocities the traveling breather is replaced by a kink reminiscent
of Nesterenko’s soliton [5], resulting in the ejection of a finite
number of particles at the end of the chain (result not shown).

In the case s > 0 of (10) we can observe a different scenario,
illustrated by Fig. 21 for s = 1. The traveling breather does not
move at constant velocity, but instead behaves like a ‘‘bouncing
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ball’’ against the boundary at n = 1, i.e. it experiences alternating
phases of deceleration, direction-reversing, accelerated backward
motion towards the boundary, and rebound at the boundary (top
left panel of Fig. 21). During a few rebounds, the breather center
behaves like a Newtonian particle in an almost constant effective
force field, which increases with the imprinted initial velocity
(compare the top and bottom panels) and with the anharmonicity
parameter s (results not shown). Fig. 22 displays a traveling
breather profile at the onset of direction-reversing. The rebound
dynamics can be followed by phases of intermittent trapping or
erratic motion of the breather (Fig. 21, top right panel).

These traveling breathers with direction-reversing motion are
reminiscent of excitations known as ‘‘boomerons’’, consisting
of direction-reversing solitons discovered in different kinds of
integrable models (see [28] and references therein), but the link
between both phenomena remains quite speculative at this stage.
Although we have no clear explanation of the origin of direction-
reversing for the traveling breather, one possibility might be its
interaction with other nonlinear waves visible in Fig. 22, which are
confined between the traveling breather and the boundary.

To complete the results of Fig. 21, it is interesting to notice
that the traveling breather can reach the opposite side of a finite
chain before direction-reversal when s is fixed and ẏ1(0) = 2ϵ
is sufficiently small. Indeed, the solution of system (6)–(10)
remains close to the DpS approximation for bounded values of
τ = ϵ1/2t (i.e. over long times t = O(ϵ−1/2)) when ϵ is small
enough in (26) [26]. According to our numerical observations, the
traveling breather solution of the DpS system (12)–(25) propagates
monotonically through the chain. Consequently, the traveling
breather solution of (6)–(10) does not display any spontaneous
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direction-reversal while traveling through the chain, provided
ẏ1(0) is small enough. The same phenomenon can occur in a finite
chain when ẏ1(0) is fixed and s > 0 is small enough, since
spontaneous direction-reversal is not observed for s = 0, and the
trajectories of (6)–(10)–(26) depend continuously on s ∈ [0, +∞)
in the uniform topology on bounded time intervals. However, on
the basis of numerical simulations realized for different values of
s and initial velocities, we conjecture that direction-reversal may
take place in semi-infinite chains as soon as s > 0 and ẏ1(0) ≠ 0
in (26). According to the above arguments, we expect the first
direction-reversal to occur at some time t = T (ϵ, s) satisfying
limϵ→0


ϵ1/2T (ϵ, s)


= +∞ and lims→0+ T (ϵ, s) = +∞.

Lastly, we would like to comment on the absence of surface
mode excitation observed in Fig. 21 for s = 1. In the work [37], we
have computed surfacemode solutions of the chain for s = 1 using
the Newton method. We have obtained spectrally stable surface
modes with frequencies lying above (and close to) ωmin ≈ 1.96,
whose energies lie above some finite threshold. Suchmodes cannot
be excited with the initial perturbations considered in Fig. 21,
whose energies lie well below this excitation threshold.

3.3.2. Traveling breathers resulting from impacts in stiff Newton’s
cradles

As seen in the previous section, a small velocity perturbation
at the end of a Newton’s cradle results in the propagation of a
highly localized traveling breather at an almost constant velocity,
well separated from a much slower dispersive wave train. This
dynamics is driven by the DpS equation governing the nonlinear
evolution of small initial data over long (but finite) times.When the
initial velocity is not small, we have identified in Newton’s cradle
different types of dynamical phenomena which are not described
by the DpS equation. These phenomena depend on the on-site
potential : observation of soliton-like localizedwaves at high initial
velocities for harmonic potentials, excitation of a surface mode
of significant amplitude for soft potentials, and generation of a
direction-reversing traveling breather for hard potentials.

In this section, we analyze conditions under which mechanical
systems involving Hertzian interactions and local potentials do not
exhibit the above phenomena, so that the main pressure wave
propagates almost freely in the form of a highly localized traveling
breather. For this purpose,wehave to discuss underwhich physical
conditions the DpS equation drives the dynamics. This analysis
is done in Section 3.3.2.1, where we derive a dimensionless
parameter λ characterizing the DpS regime. From this study, we
recover the fact that the usual Newton’s cradle acting under
gravity lies far beyond the DpS regime (it supports soliton-like
excitations instead of traveling breathers [7,5]). However, the
analysis of Section 3.3.2.1 can be used as a guide to define other
mechanical models supporting traveling breather excitations. In
Section 3.3.2.2, we introduce such a system consisting of a chain
of stiff cantilevers decorated by spherical beads, calibrated using
realistic material parameter values.

Traveling breathers described by the DpS equation could have
interesting applications for the control of stress waves in granular
systems, since they allow for a coherent and highly-localized
energy transport. Moreover, the internal oscillation of traveling
breathers may allow resonance phenomena to occur, opening
e.g. the possibility of breather interactionswith defectmodes of the
chain. As an application, we show in Section 3.3.2.2 that the above
cantilever chain can act effectively as a granular shock reflector.

3.3.2.1. Dimensional analysis of the DpS limit. In Sections 3.1.2
and 3.3.1, we have described the DpS limit and the associated
dynamical regime for Eq. (9) written in a normalized form (or for
its generalization with local anharmonicity (10)). In this section,
we consider a chain of identical beads of mass m sitting in local
anharmonic potentials, described by the Hamiltonian

H =


n

m
2

ẋ2n +
k
2
x2n +

s̃
4
x4n +

2
5

γ (xn − xn+1)
5/2
+ , (27)

where γ is the nonlinear stiffness of Hertzian interactions, k the
linear stiffness of local potentials and s̃ measures the strength of
local anharmonicity. Our aim is to analyze the evolution of the
initial condition

xn(0) = 0, ẋn(0) = V δn,1. (28)

In what follows, we use suitable scalings to rewrite this problem
in normalized form. This allows us to analyze in which parameter
regime the DpS equation drives the dynamics, which induces the
propagation of a traveling breather as described in Section 3.3.1. As
we shall see, this case occurswhen the initial velocity is sufficiently
small compared to a reference value depending on parameters.

Let us first consider two interacting beads, one being initially
at rest and the other having an initial velocity V , and temporar-
ily neglect the local restoring force of the on-site potentials. After
collision, their contact time is approximately equal to 2.43 τh with
τh = [m2/(γ 2V )]1/5, and their maximal compression distance is
close to 0.76 δ, where δ = (mV 2/γ )2/5 [47,6]. Moreover, the stiff-
ness constant of Hertzian interactions linearized at precompres-
sion δ is of the order of κh = γ

√
δ.

Including back the local restoring forces, the displacement ξ
at which Hertzian and local forces equilibrate satisfies γ ξ 3/2

=

k ξ and is given by ξ = (k/γ )2. In addition, the period of local
oscillations is 2πτc with τc = (m/k)1/2.

Now we are ready to perform a suitable rescaling of (27).
Setting xn(t) = ξ yn(t/τc), the Hamiltonian (27) is mapped to the
normalized form (6)–(10) with s = s̃ξ 2/k. Moreover, the initial
condition (28) reads in dimensionless form

yn(0) = 0, ẏn(0) = λ5/2 δn,1, (29)

where

λ =
κh

k
(30)

measures the relative strengths of theHertzian interaction at initial
velocity V and the local potential. Since κh = m/τ 2

h , we have
equivalently

λ =
m
kτ 2

h
, (31)

i.e. λ1/2 measures (up to a multiplicative constant) the relative
duration of local oscillations and binary collisions of free beads.

From (29) and the results of Section 3.3.1, we deduce that the
DpS regime giving rise to (almost) freely-propagating breathers
takes place when λ5/2 is small enough. According to definition
(30), the linear stiffness of local oscillators must dominate the
effective Hertzian stiffness κh, which depends on the initial
velocity. Equivalently (from Eq. (31)), local linearized oscillations
must be sufficiently fast compared to the collision of two free beads
occurring at the given initial velocity. In addition, one can observe
that λ5/2

= V/Vc with Vc = m−1/2 k5/2 γ −2. Consequently, the
DpS equation drives the dynamicswhen the initial velocity is small
compared to the reference velocity Vc determined by the model
parameters.

To illustrate the above computations, let us consider the
excitation of the first bead of a classical Newton’s cradle (as
represented in Fig. 1), in which the local potential is due to gravity.
In this system, impact propagation is usually analyzed under the
assumption of small bead displacements [23], leading to the case
s̃ = 0 of (27). The period of local oscillations (generally of the order
of a second) beingmuch larger than the collision time between two
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beads (typically of the order of 0.1 ms [47]), we are then extremely
far from the DpS regime. For example, for a classical Newton’s
cradle with strings of length 50 cm and binary collision time
2.43 τh = 0.077 ms (value taken from [47] for an impact velocity
of 1.1 m.s−1), one obtains λ5/2

≈ 1.75 · 1019. In that case, the
propagating wave takes the form of a soliton-like excitation which
is reminiscent of the primary compression pulse represented in
Fig. 17.

In Section 3.3.2.2, we introduce a mechanical system for which
local oscillators are much stiffer and the DpS dynamics becomes
relevant.

3.3.2.2. Application to a chain of cantilevers decorated by spherical
beads. Several types of mechanical models have been devised to
analyze the properties of discrete breathers experimentally, see
e.g. [48–51]. In this section we introduce a simplified model of the
cantilever system sketched in Fig. 1 (right picture).We consider the
form (27) analyzed previously (restricting ourselves to harmonic
on-site potentials) and examine the more general situation when
the lattice is spatially inhomogeneous. With this model, we shall
observe that amoving breather generated by an impact on the first
cantilever can be almost totally reflected by a localized impurity
corresponding to a moderate increase of the bead radii on a single
cantilever.

We begin by introducing a simplified model of the cantilever
system of (the right panel of) Fig. 1, where cantilever compression
is neglected and bead deformations are treated quasi-statically.
More precisely, each bead is seen as an elastic medium at equi-
librium, clamped at a cantilever at one side, and either free or in
contact with one bead of a neighboring cantilever at the opposite
side. So any bead deformation is fully determined by two cantilever
positions, and can be approximated byHertz’s contact law. In addi-
tion, each cantilever decorated by two spherical beads is described
by a point-mass model which approximates the dynamics of the
slower bendingmode, following a classical approach in the context
of atomic force microscope cantilevers [52]. Under these approx-
imations, our model incorporates a single degree of freedom per
cantilever, namely its maximal deflection.

The point-massmodel is obtained as follows. Using a rodmodel
and under the assumption of small deflection, a cantilever clamped
at both ends and bent by a force applied to its mid-point can
be represented by an equivalent linear spring of stiffness k =

192 E Iℓ−3, where E is the cantilever’s Young modulus, ℓ its length
and I = w h3/12 its area moment of inertia, w, h denoting the
cantilever width and thickness respectively (see e.g. [53, pp. 77
and 81]). For a cantilever without attached beads, the first bending
mode frequency satisfies ωmin ≈ 22.4 [EI/(ρA)]1/2ℓ−2 ([53],
p.102) where ρ denotes the cantilever density and A = w h its
cross section. A single cantilever is then represented by an effective
mass m∗

= k/ω2
min ≈ 0.38mc , where mc = ρAℓ is the exact

cantilever mass. The effective mass of a cantilever decorated by
two beads of massesmb is thenm = m∗

+2mb. For beads of radius
R and density d we fix consequentlym = 0.38mc + (8/3)πdR3.

Now let us describe the model for a one-dimensional chain of
such cantilevers, where all beads are made of the same material
with Young’s modulus E and Poisson coefficient ν. We denote by
Rn = R R̃n the radius of the two beads of the nth cantilever (R
being a reference value and R̃n an adimensional number), xn(t) the
maximal cantilever deflections and mn = 0.38mc + (8/3)πdR3

n
their effective masses. The array of decorated cantilevers is then
described by the Hamiltonian

H =


n

mn

2
ẋ2n +

k
2
x2n +

2
5

γn(xn − xn+1)
5/2
+ , (32)

where γn = γ ηn is the nonlinear stiffness constant of Hertzian
interactions between twobeads ondifferent cantileversn andn+1,
defined by γ =
E
√
2R

3(1−ν2)
and ηn = [2R̃nR̃n+1/(R̃n + R̃n+1)]

1/2 (see
e.g. [53]). Note that mn and γn are constant in the particular case
when Rn is constant, which leads to the homogeneous system (27)
(or its normalized form (6)) previously analyzed.

Setting xn(t) = ξ yn(t/τc) as in Section 3.3.2.1, the Hamiltonian
(32) yields the following equations of motion in dimensionless
form

µnÿn + yn = ηn−1(yn−1 − yn)
3/2
+ − ηn(yn − yn+1)

3/2
+ , (33)

whereµn = mn/m. In particular, if all beads have radiusR (i.e. R̃n =

1) then ηn = µn = 1 and one recovers system (9).
Our main purpose is to analyze an impact problem in a chain

of N cantilevers with free end boundary conditions, where the first
cantilever is hit by a striker at t = 0. For this purpose we consider
a simpler initial condition where all cantilevers with index n ≥ 2
are initially at rest and the first cantilever has initial velocity V and
zero deflection. This corresponds to fixing the initial condition (28),
which yields (29) in rescaled form.

Numerical simulations are performed for a chain of N = 200
stainless steel cantilevers with ρ = 8 · 103 kg.m−3, E = 193 GPa,
ℓ = 25 mm, w = 5 mm, h = 1 mm, decorated by teflon beads
with d = 2.2 · 103 kg.m−3, E = 1.46 GPa, ν = 0.46 [9]. All beads
have radius R = 2.38mm, except at the middle of the chain where
R̃100 can be tuned.

We fix the impact velocity V = 1 m.s−1, which yields τh ≈

0.047 ms. Since τc ≈ 0.025 ms, we have λ ≈ 0.29 and λ5/2 is
small. Consequently, according to the results of Section 3.3.2.1, the
DpS approximation is valid in the spatially homogeneous case, or
in sufficiently long homogeneous segments of a chain including
defects. As a result, the initial impact generates a traveling breather
and a fairly extended wave train emitted from the boundary,
as previously described in Section 3.3. From our simulations,
the traveling breather velocity is close to 2030 sites per second.
Evaluating the traveling breather characteristics at n = 80, we find
a maximal bead velocity close to 0.5 m.s−1 (i.e. half the impact
velocity), a maximal cantilever deflection close to 11 µm and a
maximal interaction force close to 2.8N. The pulse duration is close
to 3.8ms and the period of internal oscillations close to 0.14ms ≈

T0/(1.1), T0 = 2πτc being the period of linear local oscillations.
When the breather reaches the defect site, it appears to be al-

most totally reflected for a large enough inhomogeneity, whereas
it remains significantly transmitted for a sufficiently small inho-
mogeneity. This phenomenon is illustrated by Fig. 23, which com-
pares the cases R̃100 = 1.6 (almost total reflection) and R̃100 = 1.1
(partial reflection), showing the high sensitivity of the reflection
to the strength of the inhomogeneity. After the breather reflec-
tion by the defect for R̃100 = 1.6, a small part of the vibrational
energy remains loosely trapped near the defect site (an excitation
not visible in Fig. 23 due to smallness of interaction forces). Such
phenomena resulting from breather–defect interactions have been
already numerically observed in different types of Klein–Gordon
lattices (see [54,55] and references therein). In the present model,
almost total reflection occurs for physically realistic parameter val-
ues,which suggests potential applications of such systems as shock
wave reflectors.

To close this section, let us note that the other dynamical
regimes identified in Section 3.3 may be also of practical inter-
est. Another shock-redirection mechanism exists for hard anhar-
monic on-site potentials, which yield direction-reversing traveling
breathers for large enough impact velocities (see Fig. 21). This sug-
gests that both reflection mechanisms (based either on defects or
hard local anharmonicity) could be combined to devise an efficient
shockwave reflector working for a large range of impact velocities.
In addition, the surface modes observed for a soft on-site anhar-
monicity may have potential applications for energy scavenging,
or for the design of acoustic diodes [4].
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Fig. 23. Space–time diagrams showing the interaction forces fn = −γn(xn − xn+1)
3/2
+ in system (32) for the impact problem described in the text (forces are expressed in

N). Forces are represented in gray levels, white corresponding to vanishing interactions (i.e. beads not in contact) and black to a minimal negative value of the contact force.
Left plot: R̃100 = 1.6. Right plot: R̃100 = 1.1.
4. Traveling breathers under precompression

In Section 3 we have analyzed the properties of discrete
breathers in chains of oscillators coupled by fully nonlinear
Hertzian interactions. We have obtained highly-localized static
breathers, which display a super-exponential spatial decay and
have an almost constant width in the small amplitude limit. More-
over, small perturbations of the static breathers along a pinning
mode generate traveling breathers propagating at an almost con-
stant velocity with very small dispersion.

These properties are largely due to the fully-nonlinear cou-
pling between oscillators, which reduces the phonon band to a
single frequency. Intuitively, the absence of linear coupling terms
enhances localization, because linear dispersion tends to disperse
localized wave packets. Though this phenomenon can be compen-
sated by nonlinearity, breathers in nonlinear lattices with phonon
bands generally have a slow exponential spatial decay in the
limit of vanishing amplitude (see e.g. [18,38]). Moreover, due to
resonance with phonons, exact traveling breathers are generally
superposed on non-decaying oscillatory tails, a phenomenon
mathematically analyzed in a number of works (see [39,56,57] and
references therein). Only under special choices of the speed (or the
system parameters) can it then be the case that the amplitude of
these oscillatory tails exactly vanishes [58,59].

Due to these noticeably different breather properties in the
presence or absence of a phonon band, it is interesting to consider
physical systems possessing a tunable phonon band, allowing to
pass fromone situation to the other. This is the case in particular for
granular crystals under tunable precompression, since the latter
results in a perturbation of the interaction potential inducing an
additional harmonic component.

In this section, we incorporate the precompression effect to
model (6), formally analyze the existence of discrete breathers
through the phenomenon of modulational instability, and numer-
ically demonstrate that the existence of a phonon band can drasti-
cally modify the outcome of an initial impact.

4.1. Granular chain under precompression, and correspondence to the
NLS equation

We consider the system (6)–(10) with the modified interaction
potential

V (r) =
2
5
(d − r)5/2+ + d3/2r −

2
5
d5/2, (34)

where d > 0 is a parameter. We have thus for r ≈ 0

V (r) = v1
r2

2
+ v2

r3

3
+ v3

r4

4
+ O(|r|5),

with v1 =
3
2d

1/2, v2 = −
3
8d

−1/2, v3 = −
1
16d

−3/2. This modi-
fied potential possesses a harmonic component of size d1/2 in the
neighborhood of the origin, and it becomes linear for r ≥ d. The
first term of (34) corresponds to the classical Hertzian potential in-
cluding a precompression effect. For example, this type of interac-
tion can be achieved in the cantilever system of Fig. 1 by applying a
force at both ends when the cantilevers are unclamped, which re-
sults in a uniform compression of all the beads by a distance d, and
by clamping the cantilevers at this new equilibrium state. The sec-
ond and third terms of (34) do not modify the equations of motion,
and just aim at putting the modified Hertz potential in a standard
form with V (0) = 0, V ′(0) = 0.

System (6)–(10)–(34) consists of a mixed Klein–Gordon — FPU
lattice. The dynamical equations linearized at yn = 0 admit
solutions consisting of sinusoidal waves (or phonons) yn(t) =

A ei (qn−ωt)
+ c.c., which obey the dispersion relation

ω2(q) = 1 + 2v1(1 − cos q), (35)

where q ∈ [0, π] denotes the wavenumber and ω the phonon
frequency. Due to precompression, phonon frequencies belong
now to a band of finite width (of size O(d1/2) when d ≈ 0).

For this class of systems combining anharmonic local and inter-
action potentials, the modulational instability (MI) of small ampli-
tude periodic and standing waves has been studied in a number
of references (see e.g. [60,29]). This phenomenon can be analyzed
through the continuumnonlinear Schrödinger equation, which de-
scribes the slow spatio-temporal modulation of small amplitude
phonons under the effects of nonlinearity and dispersion. Indeed,
from the general results of [30,31], system (6)–(10)–(34) admits
solutions of the form

yn(t) = ϵA[ϵ2t, ϵ(n − c t)] ei(qn−ωt)
+ c.c. + O(ϵ3/2) (36)

on time intervals of length O(ϵ−2) (ϵ being a small parameter),
where A(τ , ξ) satisfies the NLS equation

i∂τA = −
1
2
ω′′(q) ∂2

ξ A + h|A|
2A. (37)

In the above expressions, ω is given by (35), c = ω′(q) is the group
velocity, h = β/ω, ω′′

= v1ω2/ω and we have (see [30, equation
(2.12) p. 557]),

β =
16v2

2(sin q)2(1 − cos q)2

4v1(1 − cos q)2 + 3
+

3
2
[4v3(1 − cos q)2 + s],

ω2 = cos q −
v1

ω2
(sin q)2.

The so-called focusing case of the NLS equation [10] occurs for
ω′′(q) h < 0, i.e. under the condition

Φ
def
= −βω2 > 0. (38)

In that case the spatially homogeneous solutions of (37) given
by A(τ ) = r0e−i h r20 τ are exponentially unstable, with maximum
growth rate σmax = |h|r20 .
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To analyze the occurrence of MI, one can observe that ω(q)
admits a unique inflection point in the interval (0, π), at the
wavenumber q = qc ∈ (0, π/2) satisfying cos qc = v1 (1 −

cos qc)2. In the generic case when β(qc) ≠ 0, it follows that Φ

changes sign at q = qc (since ω2 changes sign). Consequently, MI
generically occurs for wavenumbers in some interval lying at one
side of qc . This interval may extend or not up to one edge of the
phonon band, depending on parameter values. For q = 0 (in-phase
mode) the condition Φ > 0 reduces to s < 0, and for q = π (out-
of-phase mode) it reduces to 16v3 + s > 0 (these conditions have
been also obtained in [60] through a Hill’s type analysis).

Another important property of the focusing case of the NLS
equation (37) is the existence of sech-shaped soliton solutions [10].
By the ansatz (36), these solutions yield small amplitude solutions
of (6)–(10)–(34) taking the form

yn(t) = ϵM
ei[qn−(ω−ϵ2ω′′/2)t+ϕ]

cosh[ϵ(n − c t)]
+ c.c. + O(ϵ3/2) (39)

on time intervals of length O(ϵ−2), with M = (−ω′′/h)1/2. Such
solutions therefore correspond to ‘‘long-lived’’ traveling breather
excitations of the chain. The existence of exact (permanent) trav-
eling breather excitations close to the form (39) is a delicate ques-
tion. This result has been proved in special cases for Klein–Gordon
lattices (i.e. chains of linearly coupled nonlinear oscillators) and
FPU lattices, see [39,56] and references therein. These traveling
breather solutions have been obtained as small amplitude homo-
clinic orbits of an advance-delay differential equation lying on
a finite-dimensional center manifold. The homoclinic orbits con-
verge at infinity towards a periodic orbit, whose size can be made
exponentially small with respect to the amplitude of the homo-
clinics, but does not generically vanish. As a result, the travel-
ing breathers can be seen as coherent structures connecting two
identical wave trains, whose amplitude can bemade exponentially
small in ϵ (such waves are called ‘‘nanopterons’’, following the de-
nomination of [32]). Of course, these results do not directly apply
to the study of traveling breathers in system (6)–(10)–(34) includ-
ing both an anharmonic interaction potential and an on-site poten-
tial. However, in principle only minor adaptations of the analysis
of [56] should be required to prove the same type of results (due
to the evenness of W , which preserves the reversibility symmetry
of the FPU system used in [56]).

From the above theory, one can draw several differences with
respect to the case without precompression studied in Section 3,
linkedwith different features of theNLS andDpS asymptotic limits.
Firstly, the anharmonicity parameter s enters the cubic coefficient
h of the NLS equation, thereby influencing the focusing or defocus-
ing dynamics of small modulated periodic waves. On the contrary,
theDpS equation (12) does not dependon s, aswell as the evolution
(over long finite times) of small initial data in (6)–(7)–(10). In addi-
tion, the profile of (39) becomes loosely localized in the small am-
plitude limit ϵ → 0. This is in contrast with the traveling breathers
numerically obtained in Section 3.3 in the DpS regime, which are
well described by the approximation (12)–(13)–(25), resulting in a
constant width in the small amplitude limit. Such differences sug-
gest that the outcome of an impactmay be considerably affected by
the precompression, and strongly differ from the phenomenology
described in Section 3.3. This problem will be numerically exam-
ined in the next section.

4.2. Excitation of traveling breathers

In the numerical simulations performed in this section, we fix
d = 1/2 so that v1 ≈ 1.06, v2 ≈ −0.53 and v3 ≈ −0.17,
qc ≈ 1.17, and we consider different values of the anharmonicity
parameter s = 1, s = 0 and s = −1/6.
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Fig. 24. Graphs of the MI coefficients for different values of s, corresponding to
s = 1 (top), s = 0 (middle) and s = −1/6 (bottom). In each panel, the black
curve shows the MI coefficient Φ(q) defined by (38) as a function of wavenumber
q. Modulational instability occurs in the bands where Φ > 0, delimited by red
lines. The blue curve displays the absolute value |h(q)| of the cubic coefficient of
the NLS equation (37), which is proportional (up to a factor depending solely on
wave amplitude) to themaximum instability growth rate of the unstablemodewith
wavenumber q. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Before analyzing the excitation of the first site of the precom-
pressed chain (and comparing the results to the study of Sec-
tion 3.3), we illustrate below some features of the MI that will
help to interpret the results. For all the above parameter values,
there exists a band of unstable phonon modes characterized by
Φ(q) > 0 within the NLS approximation. This band and the graph
of Φ are shown in Fig. 24. In addition, the graph of |h(q)| indicates
the strength of the MI (since the maximum exponential growth
rate is proportional to |h(q)| at fixed wave amplitude).

To illustrate the MI phenomenon, we integrate (6)–(10)–(34)
numerically for initial conditions

xn(0) = a sin(qn)(1 + b cos(2nπ/N)),

ẋn(0) = −aω cos(qn)(1 + b cos(2nπ/N))
(40)

corresponding to slowly modulated phonons, with a = 0.15, b =

0.01, a wavenumber q in the band of unstable modes (see Fig. 24),
and ω determined by (35). We consider a chain of N particles with
periodic boundary conditions. Fig. 25 displays the results for s =

−1/6, q = π/4 and N = 200. The initial perturbation generates
a traveling breather over a long transient (at the end of which a
splitting of the pulse occurs). The same phenomenon occurs for
s = 1 and s = 0, albeit the latter case results in slower instabilities
and less localized traveling breathers (results not shown).

According to the above computations, long-lived traveling
breathers with profiles reminiscent of (39) can be generated
from slow modulations of small amplitude unstable phonons, in
qualitative agreement with the focusing dynamics of the NLS
equation [10]. This raises the question of the excitation of traveling
breathers from other types of initial conditions for which a
rigorous connection with the NLS equation (such as the results of
[30,31]) is not yet available. This problem is examined below for
a localized impact. We keep the same values of parameters d, s
and integrate (6)–(10)–(34) numerically (for free end boundary
conditions), starting from the initial condition (26) with ẏ1(0) ≈

1.87. Depending on the value of s, the initial excitation may lead
to different dynamical phenomena, and notable differences with
respect to the case without precompression are always observed.
We shall formally interpret these results in the framework of the
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Fig. 25. Evolution of particle positions in the system (6)–(10)–(34) with periodic boundary conditions (N = 200 particles). We consider the case s = −1/6 with
precompression d = 0.5. The initial condition (40) is plotted in the left panel (case q = π/4). Particle displacements plotted at time t = 6619 (right panel) reveal the
formation of a traveling breather resulting from a modulational instability (the envelope propagates rightwise).
NLS approximation, taking into account different features of theMI
depending on s. However, these arguments have to be considered
with caution, since the link between the NLS dynamics and the one
of the original lattice has been onlymathematically established for
well-prepared small initial data in [30,31].

The case s = 1 is described in Fig. 26, which shows the par-
ticle velocity profiles at two different times. The initial perturba-
tion generates a dispersivewave train of substantial amplitude, the
edge of which propagates at a velocity close to the maximal group
velocity ω′(qc). A traveling breather reminiscent of the sech-type
envelope solitons (39) appears after the impact. It forms around
t = 290 at the edge of the dispersive wave train, where the linear
growth rate of the MI is maximal (since |h| is maximal at q = qc in
the band of unstable modes, see Fig. 24). As expected, the travel-
ing breather is much less localized than the ones previously ob-
tained without precompression (compare Figs. 26 and 22). The
‘‘boomerang effect’’ that occurs without precompression disap-
pears, but a slowing-down of the localized wave still occurs when
time increases. As a result, the traveling breather becomes ulti-
mately superposed on an oscillatory tail at both sides of the central
pulse, which yields a profile reminiscent of the waves computed
in [61] (see also [32,59]). This dynamical behavior is consistent
with the ‘‘generic’’ existence of a small non-decaying oscillatory
tail propagatingwith exact traveling breather solutions in standard
nonlinear Hamiltonian lattices, as discussed in Section 4.1.

The cases s = −1/6 and s = 0 yield a different situation
described in Fig. 27. The initial localized perturbation generates
an important dispersive wave train, and no traveling breather
is excited, at least on the time scales of the simulation. The
differenceswith the case s = 1may be formally explained by some
qualitative changes in the features of MI. Indeed, for s = −1/6
the maximal growth rate of the MI is almost constant among the
unstable modes (in contrast with the case s = 1), hence none of
them becomes dominant during the initial stage of the instability.
Moreover, for s = 0 one can notice that h is much smaller inside
the band of unstable modes. Within the NLS approximation, this
implies that themost unstablemode grows around20 times slower
than for s = 1, according to the values of |h(qc)| indicated in
Fig. 24. Consequently,MImaynot be able to develop significantly at
t ≈ 4400 (Fig. 27). In addition, the range of applicability of the NLS
equation is itself questionable, since quintic terms or additional
modes may not be negligible due to the smallness of the cubic
coefficient h. For s = −1/6 and s = 0, the modulated wave trains
following the main disturbance might be in fact better described
by Whitham’s equation, as for the dispersive shocks occurring
at wavebreaking in hyperbolic continuum limits of Hamiltonian
lattices [45,44].

For s = −1/6 and s = 0, the difference with the case
without precompression is again striking since neither a traveling
breather nor a surface mode are generated (compare Fig. 27 with
Figs. 15, 18 and 20). As a conclusion, according to our results,
the precompression attenuates spatial localization, enhances
dispersion and modifies the effects of the on-site anharmonicity.
These phenomena originate from the additional linear component
embedded within the Hertzian interactions, and are partly related
to the different properties of the NLS/DpS asymptotic regimes.

5. Conclusion

We have analyzed the properties of discrete breathers in
FPU lattices and mixed FPU-Klein–Gordon lattices with Hertzian
interactions. While static breathers do not exist in the absence
of precompression and of onsite potentials, the addition of
the latter creates highly localized breathers, which display a
particularly strong mobility, a phenomenon well-described by the
DpS equation in the small amplitude regime and associated with
the spectral properties (i.e., the pinning mode) of such states.
Beyond the DpS limit, we have identified different phenomena
depending on the softening or hardening character of the local
potential, namely the generation of a surface mode after an
impact or the existence of direction-reversing traveling breathers.
Importantly also the stability of both the on-site and inter-site
breather states obtained was critically dependent on the strength
(and sign) of the anharmonicity.

We have also introduced a mechanical model consisting of
a chain of stiff cantilevers decorated by spherical beads, which
may allow to realize the above localized excitations. According to
our study, an impact at one end of the cantilever chain should
generate a highly-localized traveling breather. In this regime,
contrary to what is the case for a regular cradle under gravity, the
ranges of parameters of the problem (e.g., beads of about 1 cm
diameter, loads of about 1N, and cantilever width of about 1 cm)
are deemed relevant for the observation of such breathers and for
the description of the system by the DpS approximation examined
herein.

Obviously, one has to stress that the lattice model (33) is
simplified and important corrections may apply, in particular to
describe the anharmonicity of cantilever bending vibrations, or to
take into account possible additional relevant degrees of freedom.
In this context, a finite-element modeling would be helpful to
validate themodel and improve its calibration. In addition, itwould
be important to take dissipation into account, following e.g. the
approach of [62]. Since many sources of dissipation are present
(friction, plasticity effects, transmission of vibrational energy
through the walls), one may wonder if dissipation may overdamp
the dynamics and completely destroy the breathers. However,
recent experimental results [16] have demonstrated that static
breathers with lifetimes of the order of 10 ms could be generated
in diatomic granular chains. During this time, the moving breather
computed in Section 3.3.2.2 would travel over approximately 20
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Fig. 26. Snapshot of particle velocities in system (9)–(10)–(34) with anharmonicity parameter s = 1 and precompression d = 0.5, for the initial condition (26) with
ẏ1(0) ≈ 1.87. The profile is plotted at two different times t ≈ 291 (left panel), and t ≈ 3000 (right panel), showing the formation of a traveling breather surrounded by a
sizable dispersive wave train.
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Fig. 27. Same as in Fig. 26, with a snapshot of particle velocities at t ≈ 4399 for s = 0 (left panel) and s = −1/6 (right panel).
sites (performing roughly 70 internal oscillations), which would
allow for an experimental detection, provided this excitation
persists in the presence of dissipation, with moderate changes
in velocity and frequency. Although the setting of decorated
cantilevers proposed herein would have the additional source of
dissipation through radiating energy into the ground (through the
clamping of the cantilevers), it is certainly deemed worthwhile to
consider such experimental setups and to examine systematically
the resulting dynamics.

A different approach which may allow to generate static
breathers is linked with modulational instability. Indeed, static
breathers have been excited by modulational instabilities in
experiments on diatomic granular chains [16], a phenomenon also
numerically illustrated in Newton’s cradle [21]. In this respect,
an extensive study of MI in the cradle model (with the help of
the DpS equation) would be of interest. A related aspect concerns
the actuation of the system through the driving of a bead with a
particular frequency. In fact, the experiments of [16] were realized
based on such actuation of the chain at modulationally unstable
frequencies rather than the generation of suitable spatially
extended, modulationally unstable states. In that regard, it should
be noted that it is not straightforward to experimentally initialize
desired spatial profiles throughout the lattice in this system.

As we have seen, static breathers may be deformed by weak in-
stabilities resulting in a translational motion and traveling coun-
terparts thereof. However, in an experimental context, these weak
instabilities are likely to be irrelevant due to dissipation. To fix the
ideas, let us assume a breather lifetime of the order of 10 ms in
the presence of dissipation, as in the experiments of [16]. In the
computations of Section 3.3.2.2, the breather periods at small am-
plitudewere (roughly) close to 0.15ms, therefore unstable Floquet
eigenvalues 1+ϵ would have an effect over times of order 0.15ϵ−1

ms. Consequently, dissipation should destroy the breatherwell be-
fore the instability becomes observable as soon as ϵ < 0.015, and
thus the instabilities identified in Section 3.2.2 (where ϵ < 10−3)
would be largely dominated by dissipative effects.

On amore theoretical side, an open problem concerns the study
of traveling breathers in the absence of precompression. In the
above numerical computations, approximate traveling breathers
were generated by the dynamics after an impact at one end of
the chain. It would be interesting to compute exact traveling
breather solutions using theNewtonmethod, as done in references
[25,61,59] for other types of lattice models. Motivated by the ob-
servation of a small oscillatory tail following the traveling breather
in Fig. 14, we expect (as found in the above references) the exis-
tence of traveling breathers connecting families of periodic orbits
at infinity. In that case, it would be interesting to determine if the
minimal amplitude of the oscillatory tails may exactly vanish, as
observed in the saturable DNLS equation for particular wave ve-
locities [58,59]. From an analytical point of view, small amplitude
traveling breathers bifurcating from the ground state are known
to exist in FPU and Klein–Gordon lattices [56,39]. These waves are
superposed on a non-decaying oscillatory tail which can be made
exponentially smallwith respect to the breather amplitude. As pre-
viously mentioned, they have been obtained as trajectories of an
advance-delay differential equation lying on a finite-dimensional
center manifold, and homoclinic to a periodic orbit at infinity. Ex-
tending this approach to the present casewould be very interesting
but quite technical, because one should consider center manifolds
of periodic traveling waves instead of working near the ground
state. This comes from the fact that the dynamical Eq. (9) are fully
nonlinear, i.e. their linearization around the trivial state yields un-
coupled linear oscillators.

Lastly, the existence (and physical explanation) of direction-
reversing traveling breathers remains to be elucidated. Further-
more, it would be relevant to understand in more detail the nature
of interactions of the traveling breathers with static defects [54,55]
or extended waves [63].
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