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3 Department of Mathematics and Statistics, University of Massachusetts, Amherst,
MA 01003-4515, USA
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Abstract
We study the effects of management of the PT-symmetric part of the potential
within the setting of Schrödinger dimer and trimer oligomer systems. This is
done by rapidly modulating in time the gain/loss profile. This gives rise to
a number of interesting properties of the system, which are explored at the
level of an averaged equation approach. Remarkably, this rapid modulation
provides for a controllable expansion of the region of exact PT-symmetry,
depending on the strength and frequency of the imposed modulation. The
resulting averaged models are analysed theoretically and their exact stationary
solutions are translated into time-periodic solutions through the averaging
reduction. These are, in turn, compared with the exact periodic solutions of the
full non-autonomous PT-symmetry managed problem and very good agreement
is found between the two.

PACS numbers: 63.20.Pw, 63.20.Ry

(Some figures may appear in colour only in the online journal)

1. Introduction

It has been about a decade and a half since the radical and highly innovative proposal of
C Bender and his collaborators [1] regarding the potential physical relevance of Hamiltonians
respecting parity (P) and time-reversal (T) symmetries. While earlier work was focused on an
implicit postulate of solely self-adjoint Hamiltonian operators, this proposal suggested that
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these fundamental symmetries may allow for a real operator spectrum within a certain regime
of parameters which is regarded as the regime of exact PT-symmetry. On the other hand, beyond
a critical parametric strength, the relevant operators may acquire a spectrum encompassing
imaginary or even genuinely complex eigenvalues, in which case, we are referring (at the
linear level) to the regime of broken PT-phase.

These notions were intensely studied at the quantum mechanical level, chiefly as
theoretical constructs. Yet, it was the fundamental realization that optics can enable such
‘open’ systems featuring gain and loss, both at the theoretical [2–5] and even at the experimental
[6, 7] level, that propelled this activity into a significant array of new directions, including
the possibility of the interplay of nonlinearity with PT-symmetry. In this optical context, the
well-known connection of the Maxwell equations with the Schrödinger equation was utilized,
and Hamiltonians of the form H = −(1/2)� + V (x) were considered at the linear level with
the PT-symmetry necessitating that the potential satisfies the condition V (x) = V �(−x). Yet
another physical context where such systems have been experimentally ‘engineered’ recently
is that of electronic circuits; see the work of [8] and also the review of [9]. In parallel
to the recent experimental developments (including also mechanical systems [10] and even
whispering-gallery microcavities [11]), numerous theoretical groups have explored various
features of both linear PT-symmetric potentials [12–36] and even of nonlinear ones such
where a PT-symmetric type of gain/loss pattern appears in the nonlinear term [37–40].

Our aim in the present work is to combine this highly active research theme of
PT-symmetry with another topic of considerable recent interest in the physics of optical and also
atomic systems, namely that of ‘management’; see, e.g., [41, 42] for recent reviews. Originally,
the latter field had a significant impact at the level of providing for robust soliton propagation
in suitable regimes of the so-called dispersion/nonlinearity management. More recently, as
the above references indicate, the possibility (in both nonlinear optics and atomic physics)
of periodic—or other—variation also of the nonlinearity has become a tool of significant
value and has enabled to overcome a number of limitations including e.g. the potential of
catastrophic collapse of bright solitary waves in higher dimensions. In the PT-symmetric
setting, the closest example to what we envision here was proposed in the context of models
featuring bright solitons [43, 44] (hence encompassing a transverse spatial dimension rather
than exploring ordinary differential equations for few sites, as in the cases considered herein).
In that context, concurrent management of the gain and of the linear coupling was utilized
as a method of stabilization of coupled bright solitary waves between the field bearing gain
and the one featuring loss. This was found to make the solitary waves robust attractors of the
dynamics. Here, we instead chiefly consider a temporal modulation of (just the linear in our
case7) gain and loss of few node configurations (rather than continuum media). While it is
also possible to modulate the linear coupling between the nodes, we will only briefly touch
upon this possibility towards the end of our exposition. We should point out that our case
is quite different from that of [43, 44], where the concurrent presence and identical form of
the coupling and gain/loss management is critical for the form of the solutions and, thus, of
the obtained stabilization results. Admittedly, in the optical setting, and over the propagation
distance, the type of variation proposed herein may be harder to achieve. Nevertheless, in
an electronic setting where the properties of gain can be temporally controlled by relevant
switching devices, such a realization may be deemed as more feasible. Our argument herein
is that it is also very worthwhile to consider this problem from the point of view of its
implications.

7 It is entirely straightforward to envision a modulation of the nonlinear potential too, but this will be deferred as a
separate topic for future study.
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In particular, in what follows, we illustrate that in the case of a rapid modulation (‘strong’
management [41, 42]), it is possible to understand the non-autonomous PT-symmetric system
by considering its effective averaged form. We showcase this type of averaging in the case
of PT-symmetric oligomers, previously explored in a number of works (see e.g. [12, 18, 28,
29, 35, 36, 40], among others). We examine, more specifically, the case of dimers and trimers
[45] which are the most tractable (also analytically) among the relevant configurations. Our
findings suggest that there are interesting features that arise in the averaged models which are,
in turn, found to be confirmed by the original non-autonomous ones. For instance, in the case
of the dimer, the averaged effective model develops an effective linear coupling (and nonlinear
self-interaction) coefficient, which has a dramatic implication in controllably expanding the
region of the exact PT-symmetric phase, as a function of the strength and frequency of the
associated modulation. Our analysis clearly illustrates how this is a direct consequence of
the averaging process, and the properties of the periodic solutions are reconstructed on the
basis of the averaging and are favourably compared to the observations of the time-periodic
solutions of the original non-autonomous system.

Our presentation is structured as follows. In section 2, we systematically develop the
averaging procedure both for the dimer and for the trimer; the generalization to more sites will
then be evident. In section 3, we provide some general insight on the existence and stability of
solutions in these effective averaged systems. In section 4, we corroborate these results with
numerical simulations of the full non-autonomous dimer/trimer systems, finding very good
agreement between the two. Finally, in section 5, we summarize our conclusions and comment
on some interesting directions for potential future work.

2. The averaged equations for the PT-symmetric dimer and trimer models

2.1. DNLS PT-symmetric dimer model

We start by considering the DNLS dimer model with a rapidly-varying gain/loss term of the
form:

i
du

dt
= κv + |u|2u + iγ0u + i

ε
γ1(t/ε)u,

i
dv

dt
= κu + |v|2v − iγ0v − i

ε
γ1(t/ε)v, (1)

where t is the evolution variable, ε is a small parameter, γ0 represents the linear gain and
loss strength and γ1(t/ε) is the rapidly-varying gain/loss profile that will be central to our
considerations herein. We now apply a multiple scale analysis to equation (1) in order to derive
an averaged equation for our problem. First, we define the new variables τ = t/ε (fast scale)
and T = t (slow scale), and introduce the transformations

u(t) = U (T, τ ) exp[�(τ )], v(t) = V (T, τ ) exp[−�(τ )], (2)

where �(τ ) = ∫ τ

0 γ1(τ
′) dτ ′. This way, we cast equations (1) into the following form:

i

ε

∂U

∂τ
+ i

∂U

∂T
= κ exp[−2�(τ )]V + exp[2�(τ )]|U |2U + iγ0U,

i

ε

∂V

∂τ
+ i

∂V

∂T
= κ exp[2�(τ )]U + exp[−2�(τ )]|V |2V − iγ0V. (3)

Next, expanding the unknown fields U (T, τ ) and V (T, τ ) in powers of ε, i.e.,

U (T, τ ) =
∞∑

n=0

εnUn(T, τ ), V (T, τ ) =
∞∑

n=0

εnVn(T, τ ), (4)

we derive from equations (3) the following results.
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At the leading-order of approximation, i.e., atO(1/ε), we obtain the equations i∂U0/∂τ =
0 and i∂V0/∂τ = 0, which suggest that the fields U0 and V0 depend only on the slow time scale
T , i.e.,

U0(T, τ ) = Ũ0(T ), V0(T, τ ) = Ṽ0(T ). (5)

Additionally, at the order O(1), we obtain the following set of equations:

i
∂U1

∂τ
+ i

∂U0

∂T
= κ exp[−2�(τ )]V0 + exp[2�(τ )]|U0|2U0 + iγ0U0,

i
∂V1

∂τ
+ i

∂V0

∂T
= κ exp[2�(τ )]U0 + exp[−2�(τ )]|V0|2V0 − iγ0V0. (6)

Next, using the definition of the average of some function f (τ ) over a period T as
〈 f (τ )〉 ≡ (1/T )

∫ T
0 f (τ ) dτ , we average equations (6) over the period T0 of γ1(τ ), and

obtain the equations:

i

T0

∫ T0

0

∂U1

∂τ
dτ = 1

T0

∫ T0

0
dτ

[
−i

∂Ũ0

∂T
+ κ exp[−2�(τ )]Ṽ0 + exp[2�(τ )]|Ũ0|2Ũ0 + iγ0Ũ0

]

i

T0

∫ T0

0

∂V1

∂τ
dτ = 1

T0

∫ T0

0
dτ

[
−i

∂Ṽ0

∂T
+ κ exp[2�(τ )]Ũ0 + exp[−2�(τ )]|Ṽ0|2Ṽ0 − iγ0Ṽ0

]
,

(7)

where we have also used the result in equations (5). The solvability condition for these
equations is satisfied if derive the following set of averaged equations for Ũ0(T ) and Ṽ0(T ):

i
∂U0

∂T
= κ1V0 + g1|U0|2U0 + iγ0U0,

i
∂V0

∂T
= κ2U0 + g2|V0|2V0 − iγ0V0, (8)

where for convenience, we have dropped the tildes; the (constant) coefficients of the above
system are given by:

κ1 ≡ κ

T0

∫ T0

0
exp[−2�(τ )] dτ, κ2 ≡ κ

T0

∫ T0

0
exp[2�(τ )] dτ,

g1 ≡ 1

T0

∫ T0

0
exp[2�(τ )] dτ = κ2

κ
, g2 ≡ 1

T0

∫ T0

0
exp[−2�(τ )] dτ = κ1

κ
, (9)

and it should be recalled that �(τ ) = ∫ τ

0 γ1(τ
′)dτ ′ for some choice of γ1(τ ). For example, the

choice of γ1(τ ) = γ1 cos(τ ) allows one to express κ1, κ2, g1 and g2 in terms of modified Bessel
functions. In this case, the period T0 = 2π and γ1 is a constant that controls the amplitude of
the temporal modulation.

In the next section, we will follow the method employed above to derive an averaged set
of equations for the DNLS PT-symmetric trimer model.

2.2. DNLS PT-symmetric trimer model

We now consider the following DNLS trimer model with a rapidly-varying gain/loss term:

i
du

dt
= −κv − |u|2u − iγ0u − i

ε
γ1(t/ε)u,

i
dv

dt
= −κ(u + w) − |v|2v,

i
dw

dt
= −κv − |w|2w + iγ0w + i

ε
γ1(t/ε)w, (10)
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where we have used the same notation as in the case of the dimer. We again assume that the
unknown fields depend on the fast and slow scales τ and T , and can be expressed as:

u(t) = U (T, τ ) exp[�(τ )], v(t) = V (T, τ ), w(t) = W (T, τ ) exp[−�(τ )], (11)

where �(τ ) = − ∫ τ

0 γ1(τ
′)dτ ′, and U (T, τ ), V (T, τ ) and W (T, τ ) obey the following system:

i

ε

∂U

∂τ
+ i

∂U

∂T
= −κ exp[−�(τ )]V − exp[2�(τ )]|U |2U − iγ0U,

i

ε

∂V

∂τ
+ i

∂V

∂T
= −κ exp[�(τ )]U − κ exp[−�(τ )]W − |V |2V,

i

ε

∂W

∂τ
+ i

∂W

∂T
= −κ exp[�(τ )]V − exp[−2�(τ )]|W |2W + iγ0W. (12)

Next, expanding, as before, U (T, τ ), V (T, τ ) and W (T, τ ) in powers of ε, namely,

U (T, τ ) =
∞∑

n=0

εnUn(T, τ ), V (T, τ ) =
∞∑

n=0

εnVn(T, τ ),

W (T, τ ) =
∞∑

n=0

εnWn(T, τ ), (13)

we obtain from equations (12) the following results.
First, at the order O(1/ε), we obtain the equations i∂U0/∂τ = 0, i∂V0/∂τ = 0, and

i∂W0/∂τ = 0, which show that the fields U0, V0 and W0 depend only on the slow time scale T ,
i.e.,

U0(T, τ ) = Ũ0(T ), V0(T, τ ) = Ṽ0(T ), W0(T, τ ) = W̃0(T ). (14)

Next, at the order O(1), we obtain the system:

i
∂U1

∂τ
+ i

∂U0

∂T
= −κ exp[−�(τ )]V0 − exp[2�(τ )]|U0|2U0 − iγ0U0,

i
∂V1

∂τ
+ i

∂V0

∂T
= −κ exp[�(τ )]U0 − κ exp[−�(τ )]W0 − |V0|2V0,

i
∂W1

∂τ
+ i

∂W0

∂T
= −κ exp[�(τ )]V0 − exp[−2�(τ )]|W0|2W0 + iγ0W0. (15)

Similarly to the case for the PT-symmetric dimer model, we average the above system over
the period T0 of γ1(τ ). Then, employing the solvability conditions for the resulting system,
i.e., U1(T, τ ), V1(T, τ ) and W1(T, τ ) are periodic in τ with period T0, we obtain the following
set of averaged equations for Ũ0, Ṽ0 and W̃0:

i
∂U0

∂T
= −κ̃1V0 − g1|U0|2U0 − iγ0U0,

i
∂V0

∂T
= −κ̃2U0 − κ̃1W0 − |V0|2V0,

i
∂W0

∂T
= −κ̃2V0 − g2|W0|2W0 + iγ0W0, (16)

where as in the dimer case, tildes have been dropped; the coefficients of the above equations
are given by:

κ̃1 ≡ κ

T0

∫ T0

0
exp[−�(τ )]dτ, κ̃2 ≡ κ

T0

∫ T0

0
exp[�(τ )] dτ

g1 ≡ 1

T0

∫ T0

0
exp[2�(τ )]dτ, g2 ≡ 1

T0

∫ T0

0
exp[−2�(τ )] dτ. (17)

5
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Notice that g1 and g2 are given by expressions identical to those defined in the previous section.
Additionally, we will again consider the case with γ1(τ ) = γ1 cos(τ ) (with the constant γ1

being the modulation amplitude).

3. Analysis of the averaged systems

We will now find solutions of the averaged effective PT dimer and trimer models, and
investigate their stability.

3.1. DNLS PT-symmetric dimer model

In the average dimer case (see equation (8)), we seek stationary solutions in the form:

U0(t) = a exp(−iEt), V0(t) = b exp(−iEt) (18)

where amplitudes a, b are complex and frequency (or energy) E is real-valued. Moreover,
using a polar decomposition for a and b of the form:

a = Aeiφa , b = Beiφb, (19)

we obtain the following set of real equations for A and B:

κ1B sin(�φ) + γ0A = 0, −κ2A sin(�φ) − γ0B = 0

EA = κ1B cos(�φ) + g1A3, EB = κ2A cos(�φ) + g2B3, (20)

where �φ ≡ φb −φa. The compatibility condition of the equations containing sin(�φ) yields:

A2 = κ1

κ2
B2. (21)

The above equation is then substituted into the compatibility condition of the equations
containing cos(�φ), yielding the equation g1κ1 = g2κ2; the latter is always satisfied, as seen by
equation (9). Next, we use standard trigonometric identities to express A2 in terms of parameters
κ1, κ2, γ0 and E; this way, we obtain the algebraic equation (E − g1A2)2 + γ0

2 = κ1κ2, which
leads to the result:

A2 = E ∓
√

κ1κ2 − γ0
2

g1
, (22)

with the ∓ sign corresponding to two different solutions of the Hamiltonian limit. Obviously,
in the case of g1 > 0, the two solutions exist only when A2 is positive, and thus, respectively
E >

√
κ1κ2 − γ0

2 and E > −
√

κ1κ2 − γ0
2 for the (−) and (+) signs, provided that

κ1κ2 − γ0
2 > 0. In fact, the latter inequality defines the condition for being in the exact

(and not in the broken) PT-symmetric phase i.e., the underlying linear (and even the fully
nonlinear) problem of equations (8) has real eigenvalue solutions when the inequality is
satisfied.

One can also examine the stability of the stationary solutions found for the PT-symmetric
effective dimer case. Particularly, we consider the linearization ansatz on top of the stationary
solutions of equation (8) to have the form:

U0(t) = e−iEt[a + peλt + Peλ∗t], V0(t) = e−iEt[b + qeλt + Qeλ∗t], (23)

where the star denotes complex conjugate. Substituting the above ansatz into equation (8) and
linearizing in p, P, q and Q, we obtain the eigenvalue problem:

AX = iλX, (24)

6
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where X = (p,−P∗, q,−Q∗)T and the 4 × 4 matrix A has elements ai j given by:

a11 = −E + 2g1|a|2 + iγ0 a12 = −g1a2, a13 = κ1, a14 = 0

a21 = g1(a
∗)2, a22 = E − 2g1|a|2 + iγ0, a23 = 0, a24 = −κ1

a31 = κ2, a32 = 0, a33 = −E + 2g2|b|2 − iγ0, a34 = −g2b2

a41 = 0, a42 = −κ2, a43 = g2(b
∗)2, a44 = E − 2g2|b|2 − iγ0. (25)

Upon substituting the parameters characterizing the solutions of the PT-symmetric dimer
model into ai j, and solving the eigenvalue problem (24), one can then find the eigenvalues λ,
which determine the spectral stability of the corresponding nonlinear solutions: the existence
of eigenvalues with positive real part, λr > 0, amounts to a dynamical instability of the relevant
solution, while in the case where all the eigenvalues have λr � 0, the solution is linearly stable.
We will offer more details on the specifics of the linearization analysis in the numerical section,
for the particular choice of cosinusoidal dependence of γ on time considered herein.

3.2. DNLS PT-symmetric trimer model

First, we rewrite equations (16) in the following form:

i
∂U0

∂t
= k1V0 + g1|U0|2U0 + iγ0U0,

i
∂V0

∂t
= k2U0 + k1W0 + |V0|2V0,

i
∂W0

∂t
= k2V0 + g2|W0|2W0 − iγ0W0 (26)

where the averaged coefficients k1 ≡ −κ̃1, k2 ≡ −κ̃2, g1 and g2 are given in equation (17). We
again seek stationary solutions of the form:

U0(t) = a exp(−iEt), V0(t) = b exp(−iEt), W0(t) = c exp(−iEt) (27)

where E is real-valued and the complex amplitudes a, b and c are decomposed as:

a = Aeiφa , b = Beiφb, c = Ceiφc . (28)

Substituting the above expressions into equations (26) we obtain the following system for
A, B and C:

k1B sin(�φ1) + γ0A = 0, k2B sin(�φ2) − γ0C = 0,

EA = k1B cos(�φ1) + g1A3, EC = k2B cos(�φ2) + g2C
3,

EB = k2A cos(�φ1) + k1C cos(�φ2) + B3,

−k2A sin(�φ1) − k1C sin(�φ2) = 0, (29)

where �φ1 ≡ φb − φa and �φ2 ≡ φb − φc. We determine non-trivial solutions for A, B and
C by solving the first four equations in equation (29) for sin(�φ1), sin(�φ2), cos(�φ1) and
cos(�φ2), and then plugging these results into the last two equations in equation (29). This
way, we derive the following two consistency conditions:

k1k2B4 − k1k2EB2 + E
(
k2

2A2 + k2
1C2

) − (
k2

2g1A4 + k2
1g2C

4
) = 0, γ0

(
k2

1C2 − k2
2A2

) = 0.

(30)

The second equation in (30) leads to a relation connecting C2 and A2, namely C2 = (k2/k1)
2A2,

which must be imposed to satisfy the first of equations (30). Using this relation, and the first

7
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two sets of equations in (29), we find:

cos(�φ1) = A(E − g1A2)

k1B
, cos(�φ2) = ±A

(
E − g2

( k2
k1

)2
A2

)
k1B

,

sin(�φ1) = −γ0A

k1B
, sin(�φ2) = ±γ0A

k1B
. (31)

To this end, we use trigonometric identities to finally connect A and B through the algebraic
conditions:

g1
2A6 − 2Eg1A4 + (E2 + γ0

2)A2 − k1
2B2 = 0,

g2
2

(
k2

k1

)4

A6 − 2Eg2

(
k2

k1

)2

A4 + (E2 + γ0
2)A2 − k1

2B2 = 0. (32)

These equations are consistent (i.e., reduce to a single equation) if one requires g1 =
g2(k2/k1)

2. Using this requirement, along with C2 = (k2/k1)
2A2 and equation (30), we derive

two equations that can be used to determine A and B explicitly:

k1k2B4 − k1k2EB2 + 2Ek2
2A2 − 2g1k2

2A4 = 0,

g1
2A6 − 2Eg1A4 + (E2 + γ0

2)A2 − k1
2B2 = 0, (33)

where C2 = (k2/k1)
2A2 and g1 = g2(k2/k1)

2. One can then solve equations (33) for A and B
in terms of parameters g1, k1, k2, E, γ0 and g2.

In a similar manner to the dimer case, once the relevant stationary states are obtained,
one can examine the stability of the stationary solutions found for the PT-symmetric effective
trimer case. We consider solutions of equations (26) of the form:

U0(t) = e−iEt[a + peλt + Peλ∗t], V0(t) = e−iEt[b + qeλt + Qeλ∗t],

W0(t) = e−iEt[c + reλt + Reλ∗t]. (34)

Substituting this ansatz into equation (26) and linearizing in p, P, q, Q, r and R, we end up
with the eigenvalue problem:

AY = iλY, (35)

where Y = (p,−P∗, q,−Q∗, r,−R∗)T and the 6×6 stability matrix A has elements ai j which
are now given by:

a11 = −E + 2g1|a|2 + iγ0, a12 = −g1a2, a13 = k1, a14 = 0, a15 = 0, a16 = 0,

a21 = g1(a
∗)2, a22 = E − 2g1|a|2 + iγ0, a23 = 0, a24 = −k1, a25 = 0, a26 = 0,

a31 = k2, a32 = 0, a33 = −E + 2|b|2, a34 = −b2, a35 = k1, a36 = 0,

a41 = 0, a42 = −k2, a43 = (b∗)2, a44 = E − 2|b|2, a45 = 0, a46 = −k1,

a51 = 0, a52 = 0, a53 = k2, a54 = 0, a55 = −E + 2g2|c|2 − iγ0, a56 = −g2c2,

a61 = 0, a62 = 0, a63 = 0, a64 = −k2, a65 = g2(c
∗)2, a66 = E − 2g2|c|2 − iγ0.

(36)

As before, substitution of the parameters of the solutions in ai j, and solution of (35) will lead to
the eigenvalues that determine the spectral stability of the corresponding nonlinear solutions.
Once again, the details of the linear stability properties will be explored in the upcoming
numerical section.

8
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4. Numerical results for the modulated system and comparison to the averaged models

We show below the results of the numerical analysis of the full non-autonomous system of
equations (1) and (10) and compare them to those of the averaged equations derived above.
In order to simplify the notation, we denote y ≡ {u, v} for the dimer and y ≡ {u, v, w} for the
trimer. We seek solutions y(t) in the form

y(t) = exp(−iEt)x(t), (37)

with x(t) being a periodic orbit of period Tb = 2π/ω that is found by means of a shooting
method, i.e. by looking for fixed points of the map x(0) → x(Tb). The stability of the
periodic orbit is obtained by means of a Floquet method, which identifies the relevant Floquet
multipliers; see e.g. [46] for a relevant discussion and several application examples. In order to
apply the Floquet method, a small perturbation ξ (t) is added to a given solution x(t), and the
stability properties of the solutions are given by the spectrum of the Floquet operator whose
matrix representation is the monodromy matrix M. The monodromy matrix eigenvalues � are
dubbed as Floquet multipliers. This operator is real, which implies that the eigenvalues come
in pairs {�,�∗}. In addition, there is always a pair of multipliers at 1 (corresponding to the
so-called phase and growth modes).

In order to preserve the PT-symmetry of the system, γ1(t) must be even in time. In that
light, as indicated above, we have chosen

γ1(t) = γ1 cos(ωt), (38)

i.e., ε ≡ 1/ω and τ = t/ε = ωt in equations (1) and (10); consequently, if the period of γ1 is
T0 = 2π , this implies that

1

T0

∫ T0

0
exp[±β�(τ )] dτ = I0(βγ1), (39)

with β being an arbitrary real number, and I0 being the zeroth-order modified Bessel function
of the first kind. Given that I0(x) = I0(−x), we can write κ1 = κ2 = κ ′ ≡ κI0(β1γ1),
g1 = g2 = g′ ≡ I0(β2γ1), with the values of β1 and β2 depending on the particular oligomer
we are dealing with.

We have compared below the numerical results of the full non-autonomous problem with
the predictions from the averaged system when the modulation amplitude is γ1 = 1 (results for
other values of γ1 were also considered, and qualitatively similar conclusions were obtained).
We have analysed a fast modulation ω = 1000 and a considerably slower one of ω = 20. In
the former case, the agreement is excellent, i.e., the curves from the non-autonomous and the
averaged problem cannot be distinguished; for this reason, the results for that case will not be
shown. Thus, below, we will restrict our numerical presentation to the slower modulated case
of ω = 20.

The quantities compared between the effective averaged solution properties and those
of the non-autonomous system are the Floquet multipliers, which are related to the stability
eigenvalues λ of the averaged system as:

� = exp(2πλ/ω), (40)

and the averaged �2 norm (or average power) of the corresponding vector y, defined as

〈N〉 = 1

Tb

∫ Tb

0
|y(t)|2dt. (41)

Note that the predictions made for the averaged system are only able to obtain Y ≡ {U,V } or
Y ≡ {U,V,W }, so the change of variables in (2) or (11) must be taken into account in order
to find y(t).

9
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Figure 1. Averaged norm (left panel) and real part of the stability eigenvalues (right panel) for
a dimer with κ = 1, E = 3 and γ1 = 1, ω = 20. Solid (dashed) lines represent the values
for the averaged (modulated) system, whereas blue (red) corresponds to the S (A) solution. The
designation of S (symmetric) or A (anti-symmetric) corresponds to the γ0 = 0 Hamiltonian limit
of the problem where �φ = 0 or π , respectively.

4.1. DNLS PT-symmetric dimer model

In this case, κ ′ = κq, and g′ = q with q = I0(2γ1), and, consequently, (21) yields for the
averaged system:

A2 = B2 =
E ∓

√
κ2q2 − γ 2

0

q
, (42)

with the ∓ sign corresponding, respectively, to the symmetric (S) and anti-symmetric (A)
solution (of the Hamiltonian limit). The symmetric or anti-symmetric character of the periodic
orbit at the Hamiltonian limit can be easily deduced from (20), where the choice of �φ = 0
(i.e. symmetric solution) implies a minus sign in (42) while the plus sign is obtained by
using �φ = π (anti-symmetric solution). Consequently, from (42), it is clear that there is
a saddle-center bifurcation at γ0 = κq. Above this value, the amplitudes become imaginary
and the relevant analytical solutions of the effective system do not exist. This is precisely, the
nonlinear analogue of the PT phase transition; note that the latter, especially in the case of
the dimer, coincides with the linear PT phase transition. A remarkable feature that we observe
in this context is that, since q > 1, the critical point for both the linear and the nonlinear
PT-symmetry-breaking transition will be increased, hence the region of gain/loss parameters γ0

corresponding to an exact PT-symmetric phase will be expanded (possibly quite considerably
and, in any case, controllably so) with respect to the unmodulated case.

Interestingly, in the case of the dimer, following the analysis of [18], the linear stability
eigenvalues can be analytically found for the effective dimer as:

λ = ±2i

√
2(κ2q2 − γ 2

0 ) ∓ E
√

κ2q2 − γ 2
0 . (43)

The numerical analysis of the modulated system is done by choosing κ = 1 and E = 3. As
explained above, γ1 = 1, with ω = 20, yielding q = I0(2) ≈ 2.2796. If E > q, the S and A
solutions exist at γ0 = 0.

Figure 1 shows both the averaged norm and the real part of the stability eigenvalues,
together with the predicted values by the averaged equations. We can observe that
the bifurcation designated as the nonlinear analogue of the PT-phase transition (leading to the
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collision and disappearance of the—former—symmetric and anti-symmetric solutions of the
γ0 = 0 limit) takes place only slightly earlier in the non-autonomous system (at γ0 = 2.1989).
Regarding the stability, it is predicted in the averaged system that the S solution becomes
unstable for γ0 =

√
κ2q2 − E2/4 ≈ 1.7165; in the modulated system, this bifurcation takes

place around γ0 = 1.6945 (i.e., again at a very proximal value). Additionally, and quite
interestingly, even the A solution may become unstable close to the transition point i.e, for
γ0 > 2.1899. This feature is not captured by the averaged equations but also only appears to
be a very weak and hence not particularly significant effect physically. Note that the fact that
both pairs of multipliers for the A and S solutions come in towards the bifurcation point from
the unstable side has been observed recently in a PT-symmetric Klein–Gordon dimer [47].

Figure 2 shows the dynamical evolution of stable and unstable (A and S) solutions. The
top panels illustrate a case example of stable oscillations for γ0 = 1.5. Notice, however,
that this value of the gain/loss parameter is already above the critical one in the absence of
modulation, clearly showcasing the extension of the PT-symmetric regime due to the presence
of the modulation. Here, the elements of both branches execute stable periodic motion. In the
second row, for γ0 = 2, the former anti-symmetric oscillation remains stable, but the former
symmetric one is in its regime of instability, thus giving rise to a modulated form of growth,
whereby the gain site grows indefinitely while the lossy site ultimately approaches a vanishing
amplitude. The third row shows the evolution for γ0 = 2.195, a value for which both A and S
solutions are unstable. At the modified threshold (fourth row) of the PT-symmetry breaking,
both branches are sensitive to perturbations and can give rise to growth of one node and decay
of the other. This type of behaviour is also generically observed to be relevant for initial data
beyond the PT-phase transition threshold, as is shown in the bottom row.

A comment would be useful here about the accuracy of the averaging method. Since in
our averaging approach, we are capturing the effective correction to the dimer (and trimer)
coefficients at O(1/ω), where ω represents the frequency of the drive, it is expected that the
error in our approximations will be growing according to O(1/ω2) i.e., the next term in the
expansion. This is confirmed in figure 3, where the error in the approximation of the S and A
branches of the dimer by our averaging is computed numerically as a function of ω. The best
fit slope of the relevant log–log plot is ≈ −1.95, clearly underscoring the dominant role of the
O(1/ω2) terms neglected in our approximation.

We now briefly touch upon the case where the coupling κ is also modulated in time,
with the same periodicity as γ (τ ). Then, we can still pursue the averaging avenue presented
above. However, the end result will be somewhat different than the one obtained above. More
specifically, equations (8) will still be valid but now with the effective couplings:

κ1eff ≡ 1

T0

∫ T0

0
κ(τ ) exp[−2�(τ )] dτ, κ2eff ≡ 1

T0

∫ T0

0
κ(τ ) exp[2�(τ )] dτ. (44)

These coefficients retrieve the earlier results of this and the previous dimer sections if κ(τ ) = κ

i.e., for constant inter-node coupling. However, e.g. if κ(τ ) = e2�(τ ), then

κ1eff = 1, κ2eff = 1

T0

∫ T0

0
e4�(τ )dτ. (45)

We note that when γ1(τ ) = γ1 cos(τ ), κ2eff = I0(4γ1) where γ1 is a real constant. In this case,

the eigenvalues of the effective linear problem would be λ1,2 = ±
√

κ1effκ2eff − γ 2
0 . However,

since for the case of a cosinusoidal drive I0(4γ1) > I0(2γ1)
2, this result suggests that it is

possible through this additional modulation of the coupling strength to further expand the
region of exact PT-symmetric phase in comparison to the case where only the gain/loss is
modulated. While we do not explore this possibility further, we do note that it may be an
especially relevant topic for further study.
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Figure 2. Dynamical evolution by means of full numerical simulations of former (at γ0 = 0) A
solutions (left panels) and S solutions (right panels) for the modulated dimer in the case κ = 1,
E = 3, γ1 = 1 and ω = 20. Top panels correspond to a stable evolution at γ0 = 1.5 (which is
already beyond the PT-phase transition critical point for γ0 in the case of γ1 = 0); panels of the
second row show the stable (unstable) evolution for the A (S) solution at γ0 = 2, whereas the
third row displays the unstable evolution of solutions at γ0 = 2.195. Finally, the bottom panels
correspond to the evolution at γ0 = 2.3 (i.e. past the PT-symmetry breaking bifurcation) taking as
initial condition the solution at γ0 = 2.1.
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Figure 4. Averaged norm (top panel) and stability eigenvalues (bottom panels) for a trimer with
κ = 1, E = 1 and γ1 = 1, ω = 20. Solid (dashed) lines represent the values for the averaged (non-
autonomous) system, whereas blue (red) line corresponds to the A (B) solution. The C solution is
depicted as a black line.
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Figure 5. Dynamical evolution by means of full numerical simulations of A solutions for the
modulated trimer in the case κ = 1, E = 1, γ1 = 1 and ω = 20. The top left panel corresponds to
a stable evolution at γ0 = 0.5; the top right panel shows the evolution of an oscillatorily unstable
solution at γ0 = 1.8; the bottom left panel holds for an exponentially unstable solution at γ0 = 2;
finally, the bottom right panel shows an oscillatorily unstable solution at γ0 = 2.5.

4.2. DNLS PT-symmetric trimer model

We now turn to the analysis of the trimer case, where κ ′ = κI0(γ1) and g′ = I0(2γ1). In this
case, the linear stability eigenvalues of the averaged system are unfortunately not available
analytically and are, instead, found by numerical diagonalization. In the numerics, we have
chosen the same parameters as in the dimer case except for E = 1.

In agreement with what has been reported earlier for Schrödinger trimers without time-
modulation [18, 45], we have identified three distinct stationary solutions, which we will
denote hereafter as A, B and C. Solutions A and B exist at γ0 = 0 and are characterized, at this
limit, in the first case by a phase difference between the sites of π , so that u(t) = w(t) �= v(t);
in the second case, v(t) = 0 and there is a phase difference of π between the first
and third node, i.e. u(t) = −w(t). The third branch of solutions, namely C, exists for

γ0 �
√

2κ2I2
0 (γ1) − E2 ≈ 1.4852. Interestingly, there is a qualitative difference in the

bifurcation diagram (an imperfect pitchfork, which leads to an isolated branch and a saddle-
node bifurcation) between the case examined in [18, 45] and the one considered herein. In
the former, the solutions A and B terminate through a saddle-node and the C solution is the
isolated branch of the imperfect pitchfork. However, in our present system, it is the B and C
solutions which cease to exist at the fold point of γ0 = 1.5741, whereas the isolated branch
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Figure 6. Dynamical evolution by means of full numerical simulations of B solutions for the
modulated trimer in the case κ = 1, E = 1, γ1 = 1 and ω = 20. The top left panel corresponds
to a stable evolution at γ0 = 1.2; the top right panel shows the evolution of an oscillatorily
unstable solution at γ0 = 0.5; the bottom left panel represents an exponentially unstable solution
at γ0 = 1.57; finally, the bottom right panel shows the evolution at γ0 = 1.7 (i.e. past the collision
with branch C) using as initial condition the solution at γ0 = 1.5.

is now the A one. These results are predicted by the averaged model and corroborated by the
numerical analysis of the modulated system and the corresponding numerically exact (up to
the prescribed tolerance of 10−12) time-periodic solutions. Nevertheless, we have checked that
for different values of κ ′ and g′, various features of the bifurcation diagram may change. These
include the above mentioned possibility of A and B colliding rather than B and C, as well
as even the possibility of a fourth (D) branch of solutions emerging in the nonlinear system.
The latter case is non-generic, and the bifurcation scheme strongly depends on κ ′ and g′; for
instance, at κ ′ = 0.1 and g′ = I0(2γ1) the four branches exist at the Hamiltonian limit (with
C and D branches corresponding to in phase solutions) and bifurcate branch A with C and B
with D through saddle-nodes when γ0 is increased.

Figure 4 shows both the averaged norm and the stability eigenvalues (imaginary and real
parts), together with the predicted values by the averaged equations. Obviously, the prediction
of the averaged system is excellent for the B and C solutions, with a small discrepancy arising
only for the A solution. We observe that the A solution is stable for small γ0, becoming unstable
through a Hamiltonian Hopf bifurcation [48]8 at γ0 = 1.5983 (1.6261 in the averaged system).

8 It is interesting to note here that despite the fact that the system is no longer Hamiltonian, the bifurcation arising has
all the characteristics of Hamiltonian Hopf including the collision of two eigenvalues and the formation of a quartet.
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Figure 7. Dynamical evolution by means of full numerical simulations of C solutions for the
modulated trimer in the case κ0 = 1, E = 1 γ1 = 1 and ω = 20. The top left panel corresponds to
a stable evolution at γ0 = 1.5; the top right panel shows the evolution of an exponentially unstable
solution at γ0 = 1.57; the bottom left panel corresponds to the case of γ0 = 1.7 (i.e. past the
saddle-node bifurcation with branch B) using as initial condition the solution at γ0 = 1.5.

The imaginary part of that quadruplet of eigenvalues becomes zero (i.e., the instability becomes
exponential) in the range γ0 ∈ [1.9014, 2.1391] ([1.9116, 2.1731] for the averaged system);
the instability becomes again oscillatory above this range. The B solution is oscillatorily
unstable for small γ0, becoming stable via inverse Hopf bifurcation at γ0 = 1.0216 (1.0214
in the averaged case). The solution becomes exponentially unstable for γ � 1.3552 (1.3534,
respectively for the effective autonomous equation), finally colliding with the C solution and
disappearing in the relevant saddle-node bifurcation at γ0 = 1.5764 (1.5741 in the averaged
system) as explained above. The C solution, which does not exist for γ0 < 1.4869 (1.4852 in
the averaged system), is stable up to γ0 = 1.5687 (1.5667, respectively for the non-autonomous
case), beyond which it experiences exponential growth due to a real eigenvalue. It is clear
from the above comparisons that there is an excellent agreement between the predictions of
the original system and its effective, averaged description.

Figures 5–7 show the dynamical evolution of A, B and C solutions, respectively. In the
case of A solutions, we can observe their dynamical stability for sufficiently low values of
γ0 (top left panel). As γ0 is increased, initially an oscillatory (top right) and subsequently
an exponential (bottom left) instability arises. In the dynamical evolutions, the fate of the

We note that it would be especially interesting to consider the question of the potential existence of an analogous
notion to the Krein signature for these PT-symmetric systems that could predict such potential Hopf bifurcations and
quartet formations.
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solutions appears to be similar, with the gain site ultimately growing, while the other two
sites are eventually observed to decay in amplitude. Nevertheless, the exponential instability
appears to manifest itself faster, in consonance with our eigenvalue findings above. As we
progress to higher γ0, an oscillatory instability arises again, as shown in the bottom right panel
but this time with a high growth rate and a rapid destabilization accordingly.

The dynamics of the B branch is, arguably, somewhat more complex in figure 6. While
a stable evolution for γ0 = 1.2 is shown in the top left panel, for smaller values of γ0 (such
as γ0 = 0.5 of the top right panel), an oscillatory instability is present and appears to lead to
indefinite growth of the gain site, while the other two sites decay in amplitude. Perhaps most
intriguing is the case of γ0 = 1.57 of the bottom left panel of the figure. Here, the dynamics
does not appear to diverge, but rather seems to revert to a quasi-periodic motion, yielding a
bounded dynamical result. On the other hand, in the bottom right case of γ0 = 1.7, past the
critical point of the bifurcation with branch C, the dynamics is led to indefinite growth (again
with the gain site growing, while the other two are decaying in amplitude).

Lastly, we consider different dynamical examples from within the narrow interval of
existence of branch C in figure 7. In the top left panel case of γ0 = 1.5, the stable evolution
of this branch is depicted. The exponential instability of the branch in the top right panel
for γ0 = 1.57 appears, similarly to branch B, to lead not to indefinite growth but rather to
quasi-periodic oscillation and a bounded dynamical evolution. On the contrary, for values of
γ0 past the saddle-node bifurcation with branch B (but similarly to the dynamics of branch B
for such values of γ0), we observe (cf bottom left panel) indefinite growth in the dynamics for
γ0 = 1.7.

5. Conclusions and future challenges

In the present work, we have explored the potential of PT-symmetric oligomer system (a
dimer and a trimer more concretely, although generalizations to a higher number of sites
are directly possible) to have its gain/loss pattern periodically modulated in time. Although
this possibility may be somewhat more limited in optical systems, it should in principle be
possible in electric circuit settings. As we argued, additionally, this kind of possibility may
bear significant advantages including most notably the expansion of the exact PT-symmetric
phase region. The latter threshold at the linear level now becomes γ0I0(2γ1) or

√
2γ0I0(γ1),

for the dimer and trimer, respectively, for a modulated gain/loss coefficient with mean value
γ0 and a periodic modulation of amplitude γ1 and frequency ω. In addition to this expansion,
we were able through our averaging procedure to reduce the non-autonomous full problem
to an effective time-independent (averaged) one, for which a lot of information (especially so
for the dimer case) can be obtained analytically, including the existence and stability of the
relevant solutions. The results of the averaged equation approximation were generally found,
in the appropriate regime, to be in excellent agreement with those of the full, time-dependent
problem and its periodic solutions and their Floquet exponents. This was the case both for
the (former) symmetric and antisymmetric branches of the dimer and the collision leading to
their termination, but also for the branches identified in the trimer, representing an apparent
example of an imperfect pitchfork bifurcation.

One can envision many interesting and relevant extensions of the present work. One
such would be to consider the case where the PT-symmetry ‘management’ could be applied
to a full lattice or to a chain of dimers, as in the work of [20]. There, it would be quite
relevant to explore the impact of the modulation to the solitary waves and localized solutions
of the lattice. Another possibility is to consider generalizations of this ‘linear’ PT-symmetry
management towards a nonlinear variant thereof. More specifically, in the spirit of [37–40],
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a PT-symmetric gain/loss term could be applied to the nonlinear part of the dimer/trimer or
lattice. Then, one can envision a generalization of the notion of nonlinearity management and
of the corresponding averaging (see e.g. [49, 50]), in order to formulate novel effective lattice
media as a result of the averaging. Such possibilities are currently under investigation and will
be reported in future publications.
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[11] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2013

arXiv:1308.4564
[12] Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803
[13] Sukhorukov A A, Xu Z and Kivshar Yu S 2010 Phys. Rev. A 82 043818
[14] Zheng M C, Christodoulides D N, Fleischmann R and Kottos T 2010 Phys. Rev. A 82 010103
[15] Graefe E M, Korsch H J and Niederle A E 2008 Phys. Rev. Lett. 101 150408
[16] Graefe E M, Korsch H J and Niederle A E 2010 Phys. Rev. A 82 013629
[17] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[18] Li K and Kevrekidis P G 2011 Phys. Rev. E 83 066608
[19] Dmitriev S V, Suchkov S V, Sukhorukov A A and Kivshar Yu S 2011 Phys. Rev. A 84 013833
[20] Suchkov S V, Malomed B A, Dmitriev S V and Kivshar Yu S 2011 Phys. Rev. E 84 046609
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