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Abstract
In this work, we examine the collision of an atomic dark–bright soliton, in a two-component
Bose–Einstein condensate, with a Gaussian barrier or well. Our study has both an experimental
component and a theoretical/computational one. First, we present the results of an experiment,
illustrating the classical particle phenomenology (transmission or reflection) in the case of an
equal barrier in both components. Then, motivated by the experimental observations, we
perform systematic simulations considering not only the case of equal heights of a barrier
(or a well), but also the considerably more complex setting, where the potential affects only one
of the two components. We systematically classify the ensuing cases within a two-parameter
diagram of potential amplitudes in the two components, and provide intuitive explanations for
the resulting observations, as well as of their variations as the strength of the potential changes.

(Some figures may appear in colour only in the online journal)

1. Introduction

Atomic Bose–Einstein condensates (BECs) [1, 2] provide an
ideal platform for the study of nonlinear phenomena at the
mesoscopic scale (see, e.g., the reviews [3–6]). In this context,
of particular interest are multi-component BECs, which—
in their simplest version—are composed of two different
hyperfine atomic levels of the same atom (e.g., 87Rb [7, 8]).
In such systems, a rich variety of structures can be observed,
which can not arise in single-component BECs. Regarding
macroscopic nonlinear excitations of multi-component BECs,
a distinctive feature of interest involves the potential formation
of dark–bright (DB) solitons. This type of vector soliton
consists of a dark soliton in one component coupled to a bright
soliton in the second component. These solitons in repulsive
homogeneous BECs are usually referred to as ‘symbiotic’
solitons, with this characterization stemming from the fact
that the bright component cannot be supported in a stand-alone

fashion (it is only supported as such in attractive BECs [9, 10];
see also the review [5]), and is only sustained because of the
presence of its dark counterpart, which acts as an effective
external trapping potential. We highlight here the fact that we
refer to homogeneous BECs, as in the presence of external
potentials, such as optical lattices, bright (gap) solitons can be
sustained in repulsive BECs [11], but are critically shaped by
the form of the potential.

DB solitons have been studied extensively in different
settings in a large number of theoretical works (see, e.g.,
[12–21]), while they have also been observed in experiments,
both in two-component 87Rb BECs [22–27] and in nonlinear
optics [28–31]. In the BEC context, these experimental studies
have chiefly involved the dynamics of a single DB soliton in
a trap [22, 24], the generation of multiple DB solitons in a
counterflow experiment [23], the study of their interactions
[25], as well as the creation of SU(2)-rotated DB solitons, in
the form of beating dark–dark solitons [26, 27].
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On the other hand, the fundamental problem of the
interaction of solitons with localized impurities has been
considered both in nonlinear wave theory [32] and solid state
physics [33]. The interaction of either bright or dark solitons
with δ-like impurities has been investigated in the framework
of the nonlinear Schrödinger (NLS) equation (see, e.g.,
[34–38]). Relevant studies in the physics of atomic BECs have
also appeared some time ago (see, e.g., [39–41]). Among these
works, [39] considered a dark soliton as perturbed by a defect
(both the steady state, and the associated dynamical problem),
while [40] examined the collision of a moving dark soliton with
a defect and captured also the leading-order effect of produced
radiation. Recent studies have chiefly been concerned with
bright solitons both in the setting of potential wells [42, 43]
(examining resonances that can arise therein), and in that of
barriers [44, 45].

Most of the above works have been restricted to the
mean-field description of the NLS equation. Nevertheless,
the potential role of quantum fluctuations in such interactions
(especially for smaller atom numbers or narrower barriers)
has been illustrated; see e.g. [45]. Generally, the examination
of quantum effects in soliton–barrier [46, 47] and even
soliton–soliton [48] interactions is a subject of increasing
interest over the past few years. It has been argued, in
particular, that the scattering of a bright solitary wave in an
attractive BEC from a barrier potential leads to the formation
of a quantum superposition state of two distinct wave
packets travelling through real space [46]. The full quantum
mechanical scattering problem for short-range potentials and
at low energy was considered in [47] and error bounds on
the scattering coefficients were derived. Finally, in [48] it
was argued that initially uncorrelated quantum solitons lead
to entanglement, upon their pair-wise interaction.

Finally, as concerns two-component systems, the work
of [49] has also mostly focused on bright soliton–barrier
interactions at the NLS level, yet is the first one to touch
upon DB soliton interactions with a barrier acting on the bright
soliton only. In this context, localized impurities can be created
as focused far-detuned laser beams and have already been used
in experiments with dark solitons [50, 51]; we also note very
recent experiments with matter–wave bright solitons of 7Li
[52] and 85Rb [53] atoms and localized barriers. However,
such soliton–defect interactions are far less well explored in
the case of the multi-component setting (see, e.g., [20] where
the statics of DB solitons was studied in the presence of δ-like
impurities). It is the aim of this work to address this problem
and study, in particular, the scattering of atomic DB solitons at
narrow impurities. Nevertheless, it should be noted that here
we will restrict our considerations to the mean-field level. It
would be an interesting problem for further study to examine
how quantum mechanical effects modify the phenomenology
presented herein.

Our presentation will be structured as follows. In
section 2, we present the relevant prototypical model setup
in the form of two coupled Gross–Pitaevskii (GP) equations
describing the dynamics of a binary BEC with repulsive
interactions; DB solitons for this model are presented as well.
We also present results of a prototypical experiment where the

scattering of DB solitons at a barrier—which is present (and
equal) in both atomic components—is studied; this experiment
provides the motivation for a more systematic theoretical
study which is presented in the next section. In particular, in
section 3, we numerically explore the dynamics of single
DB solitons in a harmonic trap. The simpler scenario that
is studied refers to the case where the impurity is equal
in the two components—as in the case of the experiment;
we find that a particle-based phenomenology is sufficient
to capture the main characteristics here. On the other hand,
we identify a far more significant wealth of possibilities in
the setting where the barrier (or well) is applicable only in
one of the two components. We present a systematic study
within the plane of the barrier or well amplitudes for the two
components, providing intuitive explanations (on the basis
of effective potentials), wherever possible, for the observed
phenomenology. Finally, in section 4, we summarize our
findings and present our conclusions, as well as a number
of directions for potential future studies.

2. Model and experimental motivation

2.1. Gross–Pitaevskii equations and dark–bright solitons

We consider a two-component BEC composed of two different
hyperfine states of the same alkali isotope. If this binary
condensate is confined in a highly anisotropic trap (with
longitudinal and transverse trapping frequencies ωx � ω⊥),
then the mean-field dynamics of the BEC can be described by
the following system of two coupled GP equations [1, 2]:

i�∂tψ j =
(

− �
2

2m
∂2

x ψ j + Vj(x) − μ j +
2∑

k=1

g jk|ψk|2
)

ψ j,

(1)

where ψ j(x, t) ( j = 1, 2) are the macroscopic wave functions
of the two components normalized to the numbers of atoms
Nj = ∫ +∞

−∞ |ψ j|2 dx, m is the atomic mass, μ j are the chemical
potentials, g jk = 2�ω⊥a jk are the effective 1D coupling
constants (a jk are the s-wave scattering lengths), while Vj(x)

denote the external trapping potentials for each species. In
our considerations below, we will assume that the component
1 (2) supports a dark (bright) soliton; additionally, we will
assume that both components are confined by the usual
harmonic trap, namely VH (x) = (1/2)mω2

x x2, while—for
each component—an additional localized ‘impurity’ potential,
which can be generated by off-resonant Gaussian laser beams,
is also present. Thus, the external potentials Vj(x) for each of
the two components are described as

V1(x) = VH + Ed exp

(
−2x2

ε2
d

)
,

V2(x) = VH + Eb exp

(
−2x2

ε2
b

)
, (2)

where the parameters Ed , Eb and εd , εb set, respectively, the
amplitudes and widths of the impurities in each component.
Notice that for a blue- or red-detuned laser beam, the impurity
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Figure 1. Experimental images of soliton–barrier interaction. (a)–(d) The peak barrier potential is 0.56 · μBEC. The in-trap evolution times
after generation of the solitons are (a) 250 ms, (b) 500 ms, (c) 750 ms, (d) 1000 ms. (e)–(h) Similar to (a)–(d) but for a peak barrier potential
of 1.11 · μBEC and evolution times (e) 300 ms, (f) 600 ms, (g) 700 ms, (h) 900 ms. In all cases the chemical potential of the BEC, μBEC, is
approximately 36 nK (about 750 Hz).

potentials can either repel (Ed,b > 0) or attract (Ed,b < 0) the
atoms of the respective component of the condensate.

We now cast equation (1) into a dimensionless form as
follows: measuring the densities |ψ j|2, length, time and energy
in units of 2a11, a⊥ = √

�/(mω⊥), ω−1
⊥ and �ω⊥, respectively,

the equations in (1) are reduced to the form:

i∂tu = − 1
2∂2

x u + V1(x)u + (|u|2 + g̃12|v|2 − μ1)u, (3)

i∂tv = − 1
2∂2

x v + V2(x)v + (g̃12|u|2 + g̃22|v|2 − μ2)v. (4)

In equations (3)–(4), the wave functions u and v

correspond to ψ1 and ψ2 respectively, the normalized
nonlinearity coefficients are given by g̃ j2 = g j2/g11, while the
normalized harmonic trap potential (incorporated in V1(x) and
V2(x) as discussed above) is now given byVH (x) = (1/2)�2x2,
where � = ωx/ω⊥.

Notice that in the GP equations (3)–(4) the number of
atoms ND,B of each component is conserved; in fact, ND,B are
given by ND,B = (a⊥/2a11)ÑD,B, where ÑD = ∫ ∞

−∞ |u(x)|2 dx
and ÑB = ∫ ∞

−∞ |v(x)|2 dx are the respective integrals of motion
of the normalized GP equations (3)–(4).

As mentioned above, in the physically relevant setting of
87Rb, the scattering lengths characterizing the intra- and inter-
component atomic collisions are almost equal; thus, to a first
approximation, one may assume that g̃12 = g̃22 ≈ 1, which
means that the system of equations (3)–(4) is of the Manakov
type [54]; in this case, the system is integrable in the absence
of the external potentials V1,2(x) and admits exact analytical
DB soliton solutions. Particularly, considering the boundary

conditions |u|2 → μ1 and |v|2 → 0 as |x| → ∞, equations
(3)–(4) possess an exact analytical one-DB-soliton solution of
the following form (see, e.g., [12]):

uDB(x, t) = √
μ1{cos φtanhξ + i sin φ}, (5)

vDB(x, t) = ηsechξ exp[ikx + iθ (t)], (6)

where ξ = D(x − x0(t)), φ is the dark soliton’s phase angle,
cos φ and η represent the amplitudes of the dark and bright
solitons, and D and x0(t) are associated with the inverse width
and the centre position of the DB soliton. Furthermore, k =
Dtanφ = const and θ (t) are the wavenumber and phase of the
bright soliton, respectively. The above parameters of the DB-
soliton are connected through the equations: D2 = μ1 cos2 φ−
η2, ẋ0 = Dtanφ, and θ (t) = (1/2)(D2 −k2 +μ2 −μ1)t, where
ẋ0 is the DB soliton velocity.

2.2. Experimental results

Having introduced our setup, we now proceed by presenting
results of an experiment dealing with scattering of atomic DB
solitons at barriers. In fact, the results that will be presented
below, motivate the more detailed theoretical investigation of
this work, but also illustrate the experimental tractability of this
direction, and showcase prototypical results along this vein.

Our experimental results are summarized in figure 1.
There, it is shown that, depending on the barrier height,
DB solitons are either reflected by or transmitted through a
repulsive barrier.
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The experiment is conducted with a BEC of 4.5 × 105

atoms of 87Rb confined in an optical dipole trap with trapping
frequencies {ωaxial, ωvertical, ωhorizontal} = 2π ×{1.4, 120, 174}
Hz. The solitons are generated by transferring a small fraction
of the atoms from the initial |F, mF〉 = |1,−1〉 hyperfine state
to the |2,−2〉 state, and exploiting a counter-flow induced
modulational instability [23] generated by a magnetic gradient
along the axial direction. The number of solitons, as well
as their initial positions, can in principle be controlled by
adjusting experimental parameters, such as the number of
atoms transferred into the second state, and the strength and
duration of the magnetic gradient used to induce the counter-
flow. Here, it is relevant to note that regardless of the number
of the generated DB solitons (the data for figure 1 correspond
to a case of multiple solitons), the basic particle-like nature of
solitons is clearly demonstrated, as is explained in more detail
below.

As shown in figure 1, DB solitons travelling to the right
are generated in the left part of the BEC; the magnetic gradient
is subsequently turned off, and the solitons continue to move
towards the trap centre. The oscillations of individual solitons
in a trap have been investigated in detail in [24]. For the
present data, we additionally ramp on a repulsive barrier
at the centre of the trap. The barrier is generated from a
660 nm laser beam with a narrow waist of approximately
18 μm in the direction of the BEC axis and has an aspect
ratio of 4. For imaging, the two components of the BEC
are vertically separated during a short free expansion time
of 7 ms for the upper cloud and 8 ms for the lower cloud
[23, 24]. For barrier depths larger than the chemical potential
(cf figures 1(e)–(h)), we observe confinement of the DB
solitons to the left half of the BEC. This is consistent with
having two isolated BECs. For a barrier depth of approximately
half the chemical potential (cf figures 1(a)–(d)) we observe
solitons penetrating through the barrier; see, e.g., especially
panel (c) in this setting. The dynamics observed here is a subset
of the rich behaviour expected for soliton–barrier interactions.
These dynamics can be extended to more exotic regimes, e.g.,
by the addition of a species selective barrier. The latter will be
examined in more detail in our theoretical investigation below.

3. Numerical investigations

In our numerical simulations below, we will assume that
the two-component BEC under consideration consists of
two different hyperfine states of 87Rb, namely the states
|1,−1〉 and |2,−2〉 used in the experiment presented in the
previous section (see also [22–27]). In this case, the scattering
lengths take the values a11 = 100.4a0, a12 = 98.98a0 and
a22 = 98.98a0 (where a0 is the Bohr radius); accordingly,
the normalized nonlinearity coefficients in equations (3)–(4)
take equal values: g̃12 = g̃22 ≈ 0.986. Furthermore, we will
assume that the trap frequencies are ω⊥ = 2π × 116 Hz and
ωz = 2π × 1.3 Hz, i.e. � ≈ 0.0112, and the number of atoms
in each component are ND = 70 000 and NB = 1000 resulting
in a chemical potential of approximately 305 Hz for the total
atom number. These values are similar to the respective ones
used in experiments [22–27].

Concerning the parameters of the Gaussian impurity
potential, the values of Eb,d are taken in the interval
[−200, 200] Hz, and we fix the value εd = εb = ε = 3 μm.
Notice that we focus here on relatively narrow impurities, as for
those we have explored the steady-state problem [20] and, as
will be seen below, they already present a rich phenomenology.
An examination of the effect of the width of the impurity will
be deferred to a future study. Our principal aim in what follows
is to study the scattering of solitons at the impurity potential.
To do so, we displace the solitons from the trap centre, using
the initial position value x0 = −40 μm, which is sufficiently
far from x = 0, so that the solitons do not overlap with the
impurity. We then ‘release’ the solitons and observe their
subsequent interaction with the Gaussian barrier, measuring
the fraction and observing also the shape of the coherent atomic
localized structures that are transmitted, reflected, and trapped
at the potential. We will study, at first, the case Eb = Ed , as per
our experimental results (cf subsection 3.1 below) and then
the case where the impurity acts only on one component, i.e.
either Ed = 0, Eb 	= 0 or Ed 	= 0, Eb = 0 (cf subsection 3.2
below).

At this point, it is relevant to present a sketch of a
state diagram in the parameter space (Eb, Ed ), as depicted in
figure 2. The different regimes that appear after the collisions
are illustrated by colours and they will be discussed below.
Cases I (Ed = Eb = E), II (Ed = 0, Eb > 0) and III
(Ed = 0, Eb < 0) correspond to the principal cases that we will
examine in what follows; the capital letters A and B correspond,
respectively, to a small and large value of the parameters in
each region. In particular, we have taken E = 10 Hz (E =
50 Hz) in the IA (IB) case, Eb = 10 Hz (Eb = 90 Hz) in the
IIA (IIB) case, and Eb = −10 Hz (Eb = −90 Hz) for the IIIA
(IIIB) case. For each A and B case, we will illustrate contour
plots of the densities of both components. Furthermore, in the
case where Ed = Eb = E where as we will see below the
‘particle-like’ picture is most relevant, we will also display an
effective potential energy landscape encountered by the DB
solitons. This amounts to computing the turning point, say x1,
of each of our initializations of the DB soliton at position x0

(whose potential energy VH (x0) can easily be evaluated in a
parabolic trap). Then, (x1,VH (x0)) is identified as a point in
the effective potential energy surface.

3.1. Scattering of DB solitons from identical impurities

We start with the case where both impurities are identical, i.e.
Ed = Eb = E, either repulsive (E > 0) or attractive (E < 0).

In the repulsive case of Ed = Eb = E > 0, the simulations
reveal the existence of two different regimes. For sufficiently
small values of the repulsive barrier E, the DB solitons are
transmitted (transmission regime, coloured blue in region I
of figure 2). For values of E bigger than a critical value, i.e.
E � 20 Hz (for solitons launched from x0 = 40 μm) the
DB solitons are reflected (reflection regime, coloured red in
the same region I of figure 2). Thus, in this case, the solitons
behave as classical particles: if they have potential energy
(recall that the solitons start with zero kinetic energy) larger
than the height of the barrier then they are transmitted through
it, while they are reflected in the opposite case.
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Figure 2. A theoretical state diagram in the parameter space (Eb, Ed). The four different regimes that appear after the collisions are
illustrated by colours/line styles, as follows. Blue/dotted line: transmission regime; red/solid line: reflection regime; green/dash–dotted line:
transmission-reflection regime; brown/dashed line: trapping-transmission-reflection regime. Points A and B correspond, respectively, to
small and large values of the parameters in each region: I (Ed = Eb = E), II (Ed = 0, Eb > 0) and III (Ed = 0, Eb < 0).

This particle-like behaviour can be quantitatively
described as follows. First, we consider the DB-soliton’s
potential energy difference 
U caused by the defect, which
can be defined as


U = Udef − U0, (7)

with Udef (U0) being the normalized potential energy of the DB
soliton at the trap centre with(out) the defect:

Udef =
∫ ∞
−∞ dxV1(x)|u′(x)|2∫ ∞

−∞ dx |u′(x)|2 +
∫ ∞
−∞ dxV2(x)|v′(x)|2∫ ∞

−∞ dx |v′(x)|2 , (8)

U0 =
∫ ∞
−∞ dxVH (x)|u0(x)|2∫ ∞

−∞ dx |u0(x)|2 +
∫ ∞
−∞ dxVH (x)|v0(x)|2∫ ∞

−∞ dx |v0(x)|2 . (9)

In the above expressions, {u′(x), v′(x)} and {u0(x), v0(x)}
denote, respectively, the DB solitons at the trap centre with and
without the defect, as found numerically by means of a fixed
point algorithm, using as an initial guess equations (5)–(6).
Notice that the solutions with the prime are found by keeping
fixed the chemical potentials μ1,2 of each component to those
of the solution without defect.

Figure 3 shows the dependence of 
U on Ed = Eb (solid
line in the figure), as well as its comparison with the maximum
of the effective barrier height that the DB-soliton particle
encounters at the defect (red circles in the figure). The latter
quantity is found by means of numerical simulations, fixing
the initial soliton location x0 or, equivalently, of the potential
energy of the soliton, i.e. (1/2)�2x2

0, and varying Ed = Eb

in order to determine the critical value which separates the
reflection and transmission regimes for this value of x0. We
find good agreement between the two, especially for smaller
values of Ed = Eb; for large values of the defect strength,
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Figure 3. A theoretical comparison of the DB-soliton’s potential
energy difference 
U caused by the defect (solid line) with the
maximum of the effective barrier height that the DB-soliton particle
encounters at the defect, for different values of Ed = Eb = E (red
circles). The very good agreement (especially for smaller values E)
lends support to the consideration of this case as an example of a
classical (solitonic) particle scattering from a barrier.

the perturbative nature of the calculation of equations (8)–(9)
may be responsible for the somewhat decreased accuracy in
capturing the effective barrier height.

The contour plots of the densities of the dark and bright
components corresponding to relatively small and large values
of E > 0 (corresponding to IA and IB in figure 2) are
illustrated in figure 4 (columns IA and IB). The top row
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Figure 4. Numerical results for the case of identical repulsive impurities. Top row: initial density profiles of the dark components for a small
and large value of E > 0. Middle rows: contour plots of the densities of the dark components |u(x)|2 and of the densities of the bright
components |v(x)|2. The left panels correspond to a subcritical case, featuring (nearly) full transmission, while the right ones are for a
supercritical case with (nearly complete) reflection. Bottom panels: the effective potential encountered by the solitary wave. The low height
of the barrier in the left column enables transmission, while its increase in the right panel induces the reflection.
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shows the initial density profiles of the corresponding dark
components. It is important to highlight here (as it will also
become relevant for other cases) that the dark component
sustains an increasing density dip as E increases in positive
values, while it will correspondingly feature a density bump
in the case of increasing negative such values. This is a feature
of the ground state in the presence of the defect, as the latter
repels for E > 0 and attracts for E < 0 the atoms in the
neighbourhood of x = 0. It is clear also by plotting the effective
potentials (in the bottom panel of the figure) that the DB faces
a weak barrier in case IA and its potential energy is sufficient
to overcome it. On the other hand, the barrier is considerably
higher in the right panel of case IB, inducing the reflection of
the solitary wave.

We complete this section by noting that in the case where
both impurities are attractive, i.e. Ed = Eb = E < 0, the DB
solitons are always transmitted after the collision, for every
value of E, hence there is only a transmission regime depicted
by blue in figure 2.

3.2. Scattering of DB solitons from an impurity in one
component

While the dynamical evolution of the case where the defect acts
on both components was found to be fairly straightforward, the
case where the barrier is imposed selectively on only one of
the components was found to be considerably more complex.
We considered both the case where Ed = 0 and Eb 	= 0 and
that where Ed 	= 0 and Eb = 0. The results show that the
following two subcases are equivalent:

(a) (Ed = 0, Eb > 0) ≡ (Ed < 0, Eb = 0).
(b) (Ed = 0, Eb < 0) ≡ (Ed > 0, Eb = 0).

The case where Ed = 0 and Eb < 0 represents the
existence of an attractive barrier in the bright component
and absence of impurity in the dark component. The above
equivalence can be most easily qualitatively appreciated in
that case (b), hence we present it for that setting. In particular,
when an impurity attractively affects the atoms in the bright
component, then it favours the ‘collection’ of atoms near the
origin. This, in turn, builds a population of atoms in that
neighbourhood which, through the term proportional to g12

in the equations of motion, provides a repulsive barrier for
the dark component. Hence, the existence of an attractive
well solely in the bright component becomes tantamount to
having a repulsive barrier in the dark component. An analogous
argument can be used to showcase that a repulsive barrier in
the bright component, through favouring the absence of atoms
in its vicinity, creates an effective well for the dark component
atoms. The above feature is directly evident in the diagram of
figure 2, hence we only focus on one of the representatives of
each of the cases (a) and (b) above.

After the collisions, for Ed = 0, Eb > 0, part of the energy
is transmitted and part of it is reflected. We denote this as a
transmission–reflection regime (coloured green in figure 2).
For small values of Eb the DB solitons are mainly transmitted,
and when Eb is high enough they are mostly reflected.
Equivalent results, when the well depth |Ed | increases, are

obtained for the case where Ed < 0 and Eb = 0, which
represents the existence of an attractive well in the dark
component and the absence of impurity in the bright one.
For small Eb > 0, this dynamical behaviour—shown in the
left panel of figure 5—can be understood as follows. As
discussed above, the repulsion of bright atoms produces an
effective attraction of dark atoms, hence inducing an effective
potential well, rather than what was anticipated as a potential
barrier. It should be noted here that this counter-intuitive effect
was quantified in the case of a δ-function potential in [20].
This effect leads to the acceleration of the soliton (with a
small back-scatter due to the inelasticity of collision with the
defect) visible in the left panels of the figure. To complete
the discussion of figure 5, let us briefly touch upon the right
panels of the figure. This concerns the case of Eb < 0 (while
Ed = 0, namely case (b) above). The corresponding situation
here, when Eb is small presents a repulsive effect for the dark
atoms and as such results in an effective barrier. This prediction
is also corroborated by the analytical considerations for the
δ-function case of [20]. This, in turn, leads to the reflection
dynamics observed in the right panels of figure 5. Notice that
for very small negative values of Eb, soliton transmission
is actually observed, but this regime rapidly changes to the
reflection shown in the figure.

We now turn to the case of large barrier strength in figure 6.
In this setting, there is a fundamental difference in comparison
to the case of weak barrier presented previously. This consists
of the fact that for small Eb, the defining characteristic in
the DB-soliton and defect interaction is the nature of the
potential for the dark component (which, as we saw, was
somewhat counter-intuitively the opposite of the one for the
bright component). However, for large Eb, the nature of the
potential for the bright component becomes important and
hence in this case, large positive Eb also induces a locally
strong repulsive potential for the bright atoms. On the other
hand, large negative Eb creates a large attractive potential
for the bright atoms. However, the latter tends to favour
the trapping of the atoms of the bright component together
with those of the dark component, leading essentially to the
formation of a defect mode, alongside a partial reflection of
the soliton. These characteristics, namely reflection for Eb

large and positive and the possibility of trapping, along with
reflection for Eb large and negative, are illustrated in the panels
of figure 6.

An example of intermediate values of Eb and their
associated dynamics can be found in figure 7. In these
examples, for positive Eb, the impurity leads to partial
transmission and partial reflection, but does not enable the
possibility of trapping at the defect. In this case, the transmitted
fraction of the soliton (which is also present in the cases
of figures 5 and 6) is so energetic and localized that it can
be directly observed; the transmitted soliton has a velocity
different from that of the reflected soliton, and consequently,
its oscillation frequency differs as well. The possibility of
trapping at the defect is explored for Eb < 0, whereby
there is a fraction of atoms which is trapped at the defect,
while also a considerable fraction appears to be reflected; see
e.g. the right panel of figure 7. We notice that in the case

7



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065302 A Álvarez et al
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Figure 5. Numerical comparison, for a small value of |Eb|, between the case with repulsive bright impurity and the case with attractive
bright impurity, with Ed = 0. Column IIA: repulsive bright impurity with Eb = 10 Hz and Ed = 0. Column IIIA: attractive bright impurity
with Eb = −10 Hz and Ed = 0. Top row: the dark components |u(x, t)|2. Bottom row: the bright components |v(x, t)|2.
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Figure 6. Numerical comparison, for a high value of |Eb|, between the case with repulsive bright impurity and the case with attractive bright
impurity, with Ed = 0. Column IIB: repulsive bright impurity with Eb = 90 Hz and Ed = 0. Column IIIB: attractive bright impurity with
Eb = −90 Hz and Ed = 0. Top row: the dark components |u(x, t)|2. Bottom row: the bright components |v(x, t)|2.
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Figure 7. Similar to the previous two figures, but for an intermediate value of |Eb|.
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panel) versus Eb for the case Ed = 0.
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where there is no impurity affecting the dark component and
where there exists an attractive well in the bright one, as the
well depth |Eb| increases, two regimes appear alternatively:
a reflection regime and a trapping–transmission–reflection
regime (coloured red and brown, respectively, in region III
of figure 2). Indeed, this alternation may be quite complex
and a characteristic example thereof is presented in figure 8,
where the fractions of atoms transmitted through the defect,
reflected from it and trapped in the immediate vicinity of the
barrier are measured. These are quantitatively described by the
transmission, reflection and trapping coefficients. Notice that
the time-dependent coefficients are defined as

T (t) =
∫ ∞
εb

|v(x, t)|2 dx∫ ∞
−∞ |v(x, t)|2 dx

,

R(t) =
∫ −εb

−∞ |v(x, t)|2 dx∫ ∞
−∞ |v(x, t)|2 dx

,

B(t) =
∫ εb

−εb
|v(x, t)|2 dx∫ ∞

−∞ |v(x, t)|2 dx
. (10)

Figure 8 depicts these coefficients at time t ′, namely
R′, T ′ and B′, with t ′ being the time where the bright
component of the DB soliton reaches its maximum excursion
after the first interaction with the defect. The figure illustrates
that the full dynamics features more complicated resonant
type transmission events, as well as alternating windows of
predominantly reflection or predominantly trapping. These
complex scenarios are beyond the scope of the particle analysis
provided herein. We do note, however, the apparent similarity
of these results with the ones obtained in the case of a single
component bright soliton which scatters off of a quantum well
[42]. In the latter case, the variational analysis was already
fairly cumbersome even for a δ-function potential, while here it
is rendered more elaborate by the presence of two-components
and the Gaussian form of the barrier. A more detailed analysis,
perhaps in the simpler δ-function attractive setting based on
a two-mode variational ansatz would constitute an interesting
problem for further studies. Nevertheless, we should point out
that this behaviour is similar to that obtained for the case where
there exists a repulsive barrier in the dark component and there
is no impurity affecting the bright component.

4. Conclusions and future challenges

In the present work, we have studied the collisions of atomic
dark–bright (DB) solitons with narrow defects. Motivated by
the potential of experimental studies (a prototypical example
of which was shown herein), we considered the setting of a
DB soliton impinging on a defect potential. In the case of a
bright soliton hitting a well [42, 43] or a barrier [44, 45], this
theme has been of intense theoretical and even experimental
[52, 53] interest recently. However, far less has been done in
the realm of DB solitons.

We have shown that in the case of two equal repulsive
barriers acting on both components, the DB solitons
demonstrate a clear classical particle behaviour, which
involves transmission for weak potentials and reflection for
strong ones. Similarly, predominantly transmission type events

were observed for equal attractive potentials acting on both
components.

On the other hand, we illustrated that more complex
scenarios can develop in the case where the impurity acts
only on one of the two components. We categorized these
cases, illustrating the analogies of a repulsive barrier in
the first component with an attractive one in the second
component (and vice versa). We explained the low barrier
amplitude cases on the basis of somewhat counter-intuitive,
cross-component effective potentials and argued that the large
amplitude cases may be significantly different due to the role of
the defect in both components. We showcased the complexity
of the latter by means of cases containing transmission and
reflection, or trapping, transmission and reflection together
and by monitoring the dependence of the different fractions
(of trapping, transmission or reflection), as a function of the
barrier amplitude.

It would certainly be interesting to extend this chiefly
numerical (but also experimental) study further. On the
experimental side, it would be extremely interesting,
although more challenging, to engineer potentials that are
selective to particular hyperfine states, so that some of
the predictions proposed herein could be tested. From a
theoretical perspective, it would be very relevant to attempt
to distil a simple setting (e.g. a δ-function potential) where a
theoretical study of the above reported phenomenology could
be appreciated in more quantitative terms. Numerically, it
may also be quite significant to appreciate the effect of the
width of the barrier, as here we have concentrated on the
sign and magnitude (and inter-component interplay of the)
barrier. Natural extensions may also concern the possibility of
scattering in higher-dimensional settings and evaluation of the
role of transverse degrees of freedom therein.
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