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Abstract
Motivated by recent experimental results, we study beating dark–dark (DD) solitons as a
prototypical coherent structure that emerges in two-component Bose–Einstein condensates.
We showcase their connection to dark–bright solitons via SO(2) rotation, and infer from it both
their intrinsic beating frequency and their frequency of oscillation inside a parabolic trap. We
identify them as exact periodic orbits in the Manakov limit of equal inter- and intra-species
nonlinearity strengths with and without the trap and showcase the persistence of such states
upon weak deviations from this limit. We also consider large deviations from the Manakov
limit illustrating that this breathing state may be broken apart into dark–anti-dark soliton
states. Finally, we consider the dynamics and interactions of two beating DD solitons in the
absence and in the presence of the trap, inferring their typically repulsive interaction.

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the principal themes of study in the emerging field of
atomic Bose–Einstein condensates (BECs) is the examination
of the coherent structures that arise in them [1–4]. When
such explorations started over a decade ago [5–9], they were
considerably hindered by either geometric or thermal effects,
which were detrimental towards the lifetime of dark solitons
and vortices that can be formed in repulsive BECs. Yet, the
newer generations of experiments have enabled considerable
strides towards the observation of dynamics and interactions
of such nonlinear waveforms [10–15].

In addition to the above context of single-component
BECs, soliton and vortex states may also arise in multi-
component condensates, such as the two-component pseudo-
spinor BECs, or the three-component and higher component
spinor BECs [1, 2, 4]. One of the prototypical examples of
a soliton state in these settings is the so-called dark–bright
(DB) soliton [16, 17]. Experimental images of DB solitons

in a two-component BEC are presented in figure 1. The BEC
in this figure is comprised of two different hyperfine states
of 87Rb, and the solitons are generated by subjecting the
BEC to inter-component counterflow; details of this technique
are described in [18, 19]. In each panel, the atom clouds of
the two components are vertically offset for imaging only,
while all the dynamics leading to the soliton formation occurs
in overlapped clouds. Clear examples of DB solitons are
marked as ‘DB’ in the figure and they consist of a dark
soliton in one component that is coupled to a bright soliton
in the second component. These structures can be thought of
as ‘symbiotic’ (or even parasitic) states because their bright
component cannot be supported alone in the case of repulsive
interactions [3]; in fact, the bright soliton is only sustained
because of the presence of its dark counterpart, which operates
as an external trapping potential. Although DB solitons (and
even a prototypical interaction thereof) were first observed
some time ago in the context of nonlinear optics [20, 21], their
observation in recent atomic BEC experiments [10] triggered
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Figure 1. Prototypical experimental images of dark–bright and
dark–dark solitons in a two-component BEC. The two components
are vertically offset for separate imaging. All dynamics occur with
vertically overlapped components before the imaging procedure.
Clear examples of dark–bright and dark–dark solitons are marked as
DB and DD, respectively. In the fourth panel, the red (thick) line
shows a radially integrated cross section of the upper component in
the boxed region of the third panel, while the black (thin) line shows
the cross section of the lower component. The |F, mF 〉 hyperfine
states used for these images are given to the right of each component.

a sizeable burst of research activity centred around them.
Topics of study included (but were not limited to) multi-DB
soliton solutions from the viewpoint of integrable systems [22],
numerical study of DB soliton interactions [23], discrete DB
solitons [24], experimental realizations of DB soliton trains
[18], DB soliton oscillations and interactions [25, 26] as well
as interaction of DB solitons with localized impurities [27].

Recently, a ‘cousin’ of these DB solitons, namely the
dark–dark (DD) soliton—which involves two dark solitons but
with potentially a breathing oscillation between their densities
was also experimentally observed [19]. Pertinent examples are
marked as ‘DD’ in figure 1. These solitons show interesting
dynamics in which they periodically change their form, from
the one shown in the first panel to the one shown in the
second panel and back (note the order of the hump/notch
features in each of the DD components; see also figure 5
below). Such ‘beating DD solitons’ are expected to emerge
in the integrable two-component (so-called Manakov) limit
of the relevant mean-field theoretic models [28] and were, in
fact, earlier observed in numerical experiments involving the
dragging of defects through the binary condensates [29].

The current experimental advances, such as the ones
leading to the soliton images of figure 1, motivate the present
theoretical study, in which we revisit DD soliton states at
the integrable Manakov limit and extract information from
their connection to the DB solitons (section 2). These results
are corroborated by the identification of such single-DD

soliton states, as genuine periodic orbits of the Manakov case
(with and without a trap) and the study of their stability,
internal modes and associated near-equilibrium dynamics
(section 3). In addition, we examine the dynamics of such
individual solitons upon departure from the integrable limit
(section 4). Experimentally it has also become possible to
generate several solitons, and even solitons of different types,
in a single BEC—see, e.g., the third panel of figure 1 which
demonstrates the coexistence of DB and DD solitons. Although
the experimentally exploited counterflow between the two
components is beyond the scope of our current analysis,
these experimental findings motivate our investigation of the
interactions between two DD solitons (section 5). Finally,
conclusions of our study, as well as a number of interesting
perspectives for future work, are also presented (section 6).

2. DB and DD solitons: theoretical background

We consider a two-component elongated (along the x-
direction) repulsive BEC, composed of two different hyperfine
states of the same alkali isotope. In the case of a highly
anisotropic trap (i.e. if the longitudinal and transverse trapping
frequencies are such that ωx � ω⊥), this system can be
described by two coupled Gross–Pitaevskii equations (GPEs)
of the form [1]:

i �∂tψ j =
(

− �
2

2m
∂2

x ψ j + V (x) − μ j +
2∑

k=1

g jk|ψk|2
)

ψ j. (1)

Here, ψ j(x, t) ( j = 1, 2) denote the mean-field wavefunctions
of the two components (normalized to the numbers of
atoms Nj = ∫ +∞

−∞ |ψ j|2dx), m is the atomic mass, and μ j

are the chemical potentials; furthermore, g jk = 2�ω⊥a jk are
the effective one-dimensional (1D) coupling constants, ajk

denote the three s-wave scattering lengths (note that a12 = a21)
which account for collisions between atoms belonging to the
same (a j j) or different (a jk, j �= k) species, while V (x) =
(1/2)mω2

x x2 is the external trapping potential.
Let us now assume that the two-component BEC under

consideration consists of two different hyperfine states of 87Rb,
such as the states |1,−1〉 and |2, 1〉 used in the experiment of
[30], or the states |1,−1〉 and |2,−2〉 used in the experiments
of [18, 25, 19]. In the first case, the scattering lengths take the
values a11 = 100.4a0, a12 = 97.66a0 and a22 = 95.00a0,
while in the second case, the respective values are a11 =
100.4a0, a12 = 98.98a0 and a22 = 98.98a0 (where a0 is the
Bohr radius). In either case, it is clear that the scattering lengths
take approximately the same values, say ai j ≈ a. This way,
measuring the densities |ψ j|2, length, time and energy in units
of 2a, a⊥ = √

�/ω⊥, ω−1
⊥ and �ω⊥, respectively, we may cast

equations (1) into the following dimensionless form:

i∂tu1 = − 1
2∂2

x u1 + V (x)u1 + (|u1|2 + |u2|2 − μ)u1, (2)

i∂tu2 = − 1
2∂2

x u2 + V (x)u2 + (|u1|2 + |u2|2 − μ)u2, (3)

where we have also assumed that the chemical potentials
characterizing each component are equal. Note that the
potential in equations (2) and (3) is now given by V (x) =

2
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(1/2)�2x2, where � = ωx/ω⊥ is a natural small parameter of
the system.

The above system of equations (2) and (3) is invariant
under SU(2) rotations [28]. In particular, let us first recall that
a general matrix element of SU(2) takes the form

U =
(

α −β∗

β α∗

)
,

where α and β are complex constants such that |α|2+|β|2 = 1.
Then, it can be shown that if (u1, u2)

T are solutions of
equations (2) and (3), then,(

u′
1

u′
2

)
≡ U

(
u1

u2

)
=

(
αu1 − β∗u2

βu1 + α∗u2

)
,

are also the solutions of equations (2) and (3). This suggests
that we may start from the exact DB soliton solution (which
exists in the absence of the potential) and derive the beating
DD soliton solution. More specifically, in the absence of the
external potential (V (x) = 0) and for the boundary conditions
|u1|2 → μ and |u2|2 → 0 as |x| → ∞, equations (2) and (3)
possess an exact analytical single-DB soliton solution of the
following form:

u1(x, t) = √
μ{cos φ tanh ξ + i sin φ}, (4)

u2(x, t) = η sech ξ exp{i kx + i θ (t)}, (5)

where ξ = D(x − x0(t)), φ is the dark soliton’s phase angle,
cos φ and η represent the amplitude of the dark and bright
solitons, and D and x0(t) are associated with the inverse
width and the centre position of the DB soliton. Furthermore,
k = D tan φ and θ (t) are the (constant) wavenumber and phase
of the bright soliton, respectively. The above parameters of the
DB soliton are connected through the following equations:

D2 = μ cos2 φ − η2, (6)

ẋ0 = k = D tan φ, (7)

θ̇ = 1
2 (D2 − k2), (8)

with ẋ0 and θ̇ denoting the DB soliton velocity and angular
frequency, respectively (overdots denote time derivatives).
Thus, the DB solitons (4) and (5) are characterized by three
free parameters (seven parameters μ, φ, η, k, D, ẋ0, θ̇ and four
constraints (6)–(8)). Note that the amplitude η of the bright
soliton, the chemical potential μ of the dark soliton and the
(inverse) width parameter D of the DB soliton are connected
to the number of atoms NB of the bright soliton by means of
the following equation:

NB ≡
∫

R

|u2|2 dx = 2
√

μη2

D
. (9)

According to the above arguments, one may start from the DB
soliton and construct SU(2)-rotated solutions, in the following
form:

u1(x, t) = α
√

μ{cos φ tanh ξ + i sin φ}
−β∗η sech ξ exp{i kx + i θ (t)}, (10)

u2(x, t) = β
√

μ{cos φ tanh ξ + i sin φ}
+α∗η sech ξ exp{i kx + i θ (t)}. (11)

With the additional four parameters α, β ∈ C and the constraint
|α|2 + |β|2 = 1, the solutions (10) and (11) are characterized
by six free parameters. Introducing a new parameter c, the
velocity of the background fluid, another solution can be
constructed from equations (10) and (11) via a Galilean boost:
exp[i (cx − c2t/2)]u1,2(x − ct, t). Thus, in the most general
case, this DD soliton solution is characterized by seven free
parameters. One natural set of parameters can be found from
the far-field |x| → ∞ behaviour consisting of two densities,
an overall fluid velocity and four phases.

Due to Galilean invariance and phase invariance,
u′

j(x, t) = ei ϕ j u j(x, t), we will assume, without loss of
generality, that the background is at rest (c = 0) and focus,
more specifically, on the case of the SO(2)-rotated DB soliton.
In this case, the corresponding orthogonal matrix is given by

U =
(

cos(χ ) − sin(χ )

sin(χ ) cos(χ )

)
, (12)

where χ is an arbitrary angle. This way, the relevant SO(2)-
rotated soliton solution takes the form

u1(x, t) = cos(χ )
√

μ{cos φ tanh(D(x − x0(t))) + i sin φ}
− sin(χ )η sech(D(x − x0(t))) exp{i kx + i θ (t)},

(13)

u2(x, t) = sin(χ )
√

μ{cos φ tanh(D(x − x0(t))) + i sin φ}
+ cos(χ )η sech(D(x − x0(t))) exp{i kx + i θ (t)},

(14)

Solutions (13) and (14) are the DD soliton solutions
characterized by four free parameters. The asymptotics of
these solutions are |u1|2 → μ cos2(χ ) and |u2|2 → μ sin2(χ )

as |x| → ∞. The densities of the above dark solitons read

n1 ≡ |u1|2 = μ cos2(χ )− (μ cos2(χ ) cos2 φ − η2 sin2(χ ))

× sech2ξ − √
μη sin(2χ){sin φ sin[kx + θ (t)]

+ cos φ cos[kx + θ (t)] tanh ξ} sech ξ, (15)

n2 ≡ |u2|2 = μ sin2(χ ) − (μ sin2(χ ) cos2 φ − η2 cos2(χ ))

× sech2ξ + √
μη sin(2χ){sin φ sin[kx + θ (t)]

+ cos φ cos[kx + θ (t)] tanh ξ} sech ξ, (16)

while the total density ntot of the DD soliton is given by

ntot = n1 + n2 = μ − D2 sech2ξ . (17)

Note that the total density of the DD soliton is time independent
and has the form of a dark soliton density of depth D2 on
top of a background density μ. The above density is, in fact,
identical to the density of the DB soliton; this is due to the fact
that under SO(2) rotation the total density, as well as all other
conserved quantities of the system, remains unchanged. This
will be particularly important when considering the motion of
the DD soliton in a trap—see below.

On the other hand, one may consider the individual dark
soliton densities, n1 and n2, across the trajectory of the DD

3
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soliton, i.e. for ξ = 0: in such a case, x = x0(t) = kt and the
densities read

n1(ξ = 0) = μ cos2(χ ) sin2 φ + η2 sin2(χ )

−√
μη sin(2χ) sin φ sin

[
1

2
(k2 + D2)t

]
, (18)

n2(ξ = 0) = μ sin2(χ ) sin2 φ + η2 cos2(χ )

+√
μη sin(2χ) sin φ sin

[
1

2
(k2 + D2)t

]
. (19)

It is clear that n1,2(ξ = 0) are periodic functions of time;
the relevant angular frequency (which constitutes the internal
beating frequency of the DD soliton) is given by

ω0 = 1
2 (k2 + D2) = 1

2 (μ − η2 sec2 φ), (20)

where we have also used equation (6). The frequency ω0 is
bounded by two limiting values. First, in the case η → 0,
the beating DD soliton becomes a stationary (in its density
profile) DD soliton, characterized by a width D = √

μ cos φ

and a velocity k = √
μ sin φ; in this case, ω0 → (1/2)μ.

Second, in the limiting case D → 0, the beating DD soliton is
reduced to a plane wave; in this case, ω0 → (1/2)k2. In other
words, the intrinsic oscillation frequency takes values in the
range

1
2 k2 < ω0 < 1

2μ. (21)

3. DD solitons as periodic orbits in the Manakov
model

In this section, we analyse the existence, stability and dynamics
of single-beating DD solitons in a trap of the form V (x) =
1
2�2x2, considering them as periodic orbits. In the presence of
the trap, the dynamics of the centre of mass x0(t) of the beating
DD soliton is still described by the dynamics of the original
(unrotated) DB soliton centre x0. This is due to the fact that
the GPEs (2, 3) are invariant under SO(2) rotations even in
the presence of V (x), and so are all conserved quantities of
the system, such as the total energy. Since the derivation of the
equation of motion for the DB soliton centre x0 in [16] was
relying on the change of energy (due to the presence of the
trap), it is clear that the evolution of the beating DD soliton
centre follows the same dynamics: it performs a harmonic
oscillation in the trap according to the equation ẍ0+ω2

oscx0 = 0,
where the oscillation frequency ωosc is given by [16]

ω2
osc = �2

⎛
⎝1

2
− r

8
√

1 + ( r
4 )2

⎞
⎠ , (22)

where r = NB√
μ

is a measure of the ratio of the number of atoms
in the bright and dark soliton components. In order to compute
the soliton profile and determine its stability, we consider the
solutions of equations (2) and (3), with g11 = g22 = g12 = 1,
as a Fourier series expansion of period ω0

6, namely

u1(x, t) =
∞∑

k=−∞
zk(x)ei kω0t, u2(x, t) =

∞∑
k=−∞

yk(x)ei kω0t,

6 Note that we cannot do this analysis for systems with g11 : g12 : g22 �= 1 as,
in that case, there is always an oscillation of the centre of mass (alike to that
of a particle in a well) with a frequency non-commensurable to the beating
frequency. Consequently, purely periodic orbits do not generically exist.

(23)

with {zk}, {yk} ∈ R. Then, the dynamical equations are reduced
to a set of coupled equations:

[μ − kω0 − V (x)]zk + 1

2
∂2

x zk =
∑

p

∑
q

(
zpz∗

q + ypy∗
q

)
zk−p+q,

(24)

[μ − kω0 − V (x)]yk + 1

2
∂2

x yk =
∑

p

∑
q

(
zpz∗

q + ypy∗
q

)
yk−p+q,

(25)

where we have used the notation zk ≡ zk(x), yk ≡ yk(x). If the
trap is absent, it is straightforward to see that the waveform of
(23) with

z0(x) =
√

μ

2
tanh(

√
2ω0x) = y0(x), (26)

z1(x) = −
√

μ

2
− ω0 sech(

√
2ω0x) = −y1(x), (27)

z j(x) = y j(x) = 0, | j| > 1 or j = −1, (28)

is actually the solution (13, 14) for χ = π/4, φ = k = 0
and ω0 = D2/2. In order to numerically find a DD soliton
solution in the system with the trap, the previous solution
with the dark component {zk} multiplied by the Thomas–
Fermi cloud with uTF

1 = √
max(μ − V (x), 0) is introduced as

a seed for a fixed-point method in the system of equations (24)
and (25). Throughout this section, we have considered—for
convenience—a trap strength � = 0.2 in order to consume
less time in the numerical calculations, as will be explained
below. Figures 2 and 3 show the periodic orbit for t = 0 without
and with a trap potential, respectively. It is worth remarking
that solutions in the trap exist for μ > 2ω0, as predicted in the
end of section 2.

The choice of a trap strength � = 0.2 for studying the
stability of periodic orbits instead of, e.g., a value such as
� = 0.01 (which would represent a ratio of trap strengths
much closer to a 1D situation) is twofold. On the one hand,
as indicated by equation (22), the oscillation period scales
with �−1; consequently, decreasing 20 times the trap strength
implies an integration time 20 times larger (for the same
temporal resolution); on the other hand, the Thomas–Fermi
radius (RTF = √

2μ/�), which measures the condensate size
would also increase 20 times, so the number of equations to
integrate also increases in this way (at least for the same spatial
resolution).

Once a periodic solution is found, its (linear) orbital
stability can be analysed by means of Floquet analysis.
To this end, the time evolution of a small perturbation
{ξ1(x, t), ξ2(x, t)} to a periodic solution {u1,0(x, t), u2,0(x, t)}
must be traced. For the double indices of ui, j, i represents
the component index, i.e. i = 1, 2 is the first and second
components of the DD soliton solution respectively. The index
j = 0 denotes that this is the (numerically) exact periodic
solution for u1 and u2, around which we linearize in our Floquet

4
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Figure 2. Left panel: profiles and densities of the beating DD soliton solution with � = 0, ω0 = 0.5 and μ = 1.5 at t = 0. Right panel: the
Floquet multiplier spectrum for the DD soliton displayed in the left panel.
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Figure 3. Same as figure 2 but in the trapped case with � = 0.2.

analysis. The perturbations are introduced in the dynamical
equations ((2) and (3)) as

u1(x, t) = [u1,0(x, t) + δξ1(x, t)],

u2(x, t) = [u2,0(x, t) + δξ2(x, t)],
(29)

and the resulting equation at order O(δ) reads

i ∂tξ1 = [− 1
2∂2

x + 2|u1,0|2 + |u2,0|2 − μ + V (x)]ξ1 + u2
1,0ξ

∗
1

+u∗
2,0u1,0ξ2 + u2,0u1,0ξ

∗
2 , (30)

i ∂tξ2 = [− 1
2∂2

x + |u1,0|2 + 2|u2,0|2 − μ + V (x)]ξ2 + u2
2,0ξ

∗
2

+ u∗
1,0u2,0ξ1 + u1,0u2,0ξ

∗
1 . (31)

Then, in the framework of Floquet analysis, the stability
properties of periodic orbits are resolved by diagonalizing the
monodromy matrix M, which is defined as⎡

⎢⎢⎣
Re(ξ1(x, T ))

Im(ξ1(x, T ))

Re(ξ2(x, T ))

Im(ξ2(x, T ))

⎤
⎥⎥⎦ = M

⎡
⎢⎢⎣

Re(ξ1(x, 0))

Im(ξ1(x, 0))

Re(ξ2(x, 0))

Im(ξ2(x, 0))

⎤
⎥⎥⎦ , (32)

with T = 2π/ω0. As the system is symplectic and
Hamiltonian, the linear stability of the solutions requires that
the monodromy eigenvalues λ (also called Floquet multipliers)
must lie on the unit circle (see, e.g., [34, 35] for details).

The Floquet multipliers can also be written as λ = exp(i �),
with � denoting the Floquet exponent. An internal mode of
the soliton corresponds to a spatially localized solution of
equations (30) and (31), with its oscillation frequency related
to the Floquet exponents as ωm = �ω0/(2π). Figures 2 and 3
show a typical Floquet multiplier spectrum, indicating stability
of the periodic orbits. All the analysed solutions (i.e. with
� = 0 and � = 0.2) are stable.

Some interesting results can be extracted by the analysis
of the internal modes of the periodic orbits. Figure 4(left)
shows the dependence of three internal modes of the Floquet
spectrum with respect to μ for ω0 = 0.5. The blue line is
close to the frequency predicted by equation (22) (depicted as
a dashed red line). Indeed, perturbing the beating DD soliton
with the corresponding eigenmode, we have confirmed that this
perturbation leads to an oscillation of the soliton in the trap
with a frequency equal to that of the eigenmode (cf left panel
of figure 5). It can be observed that the agreement between the
numerical eigenfrequency and that predicted by equation (22)
improves when μ increases, as expected. More specifically,
the assumption that the solitary wave is a particle inside a
Thomas–Fermi cloud is one of increasing validity the deeper
one is within the Thomas–Fermi limit of large μ. The right
panel of figure 4 shows the dependence of the frequency of
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Figure 5. Contour plots showing the evolution of the densities of the DD soliton components (first and second rows depict respective
components) when perturbed by three different eigenmodes: the left panel corresponds to a soliton perturbed along the blue mode and leads
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breathing of the soliton width, whereas in the right panel (perturbation along the green mode), the outcome corresponds to an oscillation of
the whole condensate. In all cases, μ = 3, ω0 = 0.5 and � = 0.2.

the internal mode corresponding to the oscillation of the trap

with respect to ω0 for fixed μ = 5 and compares it with the

frequency predicted by equation (22).

We note here, as an aside in the case � = 0, that the

internal soliton modes are neutral modes located at (1, 0) on

the unit circle. In particular, the mode associated with the

oscillation of the DD soliton in the trap becomes in this case

a neutral mode associated with the translation of the soliton.

The algebraic multiplicity of the multiplier at (1, 0) in the case

of � = 0 is 8, while in the trapped case (due to the lifting of
translational invariance) it is 6.

In order to observe the properties of other internal
modes, we have perturbed the beating DD soliton with the
corresponding eigenmodes. In particular, a perturbation along
the direction of the localized mode depicted in black in the
left panel of figure 4 leads to a breathing in the width of
the soliton—see the middle panels of figure 5. On the other
hand, a perturbation along the direction of the mode depicted
in green in the left panel of figure 4 leads to an oscillation
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Figure 6. Left panel: profiles and densities of a periodic orbit at t = 0 with μ = 3, ω0 = 0.5 and � = 0.2. The right panel shows the DB
soliton arising by rotating with χ = −π/4 the DD soliton of the left panel.

of the condensate along the trap, leaving the beating DD
soliton unaffected (i.e. the soliton stays at the trap centre)—
see the right panels of figure 5. For progressively weaker
traps, the modes of the background condensate and of the
DB solitary wave essentially decouple and in fact two of the
frequencies shown in figure 4 (green and blue) tend to 0, as
the corresponding motions (of the solitary wave through the
background or of the background through the solitary wave)
become neutral.

Finally, we make a remark about the way we have
calculated the value NB that must be introduced in
equation (22). The procedure consists of performing an SO(2)
rotation with χ = −π/4 to the periodic DD soliton at t = 0.
This solution is shown in the left panel of figure 6, whereas
the rotated solution is depicted in the right panel of the same
figure. Thus, NB is the norm of the bright component of the
rotated solution.

4. Single-beating DD solitons near and far from the
Manakov limit

We now turn to a numerical study of the properties of the
beating DD soliton states. Firstly, in the absence of a trap, we
are going to compare the integrable case with equal scattering
lengths g11 : g12 : g22 = 1 : 1 : 1 to the non-integrable
case g11 : g12 : g22 = 1.03 : 1 : 0.97 (see [30]). From
figure 7, we observe that both of the dark components are
oscillating with fixed frequencies and these two cases are very
similar7. All of the runs reported below for one of these
parameter sets have been repeated with the second one, and
in all cases we have observed a close similarity between the
dynamical phenomenology of these two cases.

To highlight the fact that substantial variations of the
scattering length—which can be imposed by virtue of a
Feshbach resonance—may have a significant impact on the

7 In what follows when the relevant interaction coefficients are not explicitly
mentioned, it will be implied that they assume the values g11 = g12 = g22 = 1.
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Figure 7. The comparison between the integrable case
g11 : g12 : g22 = 1 : 1 : 1 (left column) and the non-integrable case
g11 : g12 : g22 = 1.03 : 1 : 0.97 (right column) is demonstrated. The
upper panels show the densities of the first-dark soliton component
while the lower ones show the second-dark component. Here
η = 0.6, χ = π/4, θ = 0, k = 0, μ = 1. Based on the similarity of
the relevant dynamics, we will focus on the case of unit nonlinear
coefficients.

robustness of the beating DD solitons, we consider scattering
lengths in the set with ratios g11 : g12 : g22 = g : 1 : 1. In
particular, we take g = 1.1, 1.2, 1.6 in figure 8. When g is not
so large, i.e. g = 1.1, 1.2, the beating DD soliton oscillates
and, as t increases, the change in the scattering length results
in mobility of the coherent structure. However, more dramatic
events can arise when g is relatively large, e.g., for g = 1.6.
There, we can see that the soliton is finally split into two
fragments (upon growth of the intrinsic beating oscillation
which eventually induces the splitting) and results in two states
that resemble dark–anti-dark solitons [31] (see also [29]). In
particular, each of the components acquires a dark soliton
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Figure 8. The dynamics of the densities of a DD soliton in the
absence of a trap but for g = 1.1, g = 1.2, g = 1.6 respectively
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second-dark soliton components, respectively. When g = 1.1 or
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g = 1.6 the coherent structure executes a growing oscillation which
eventually results in its splitting into a pair of dark–anti-dark
solitons (i.e. a dark soliton in one component coupled to a lump in
the other). The parameters used here are the same as in figure 7.
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Other parameters are the same as in figure 7. The upper two panels
show the oscillation of the soliton initially centred at x0 = 2.5 (the
chemical potential is μ = 1). The lower left panel demonstrates the
centre of mass of the DD in the upper panels. The analytical
oscillation frequency, given by equation (22), is 0.03123, while the
numerical frequency, calculated by Fourier transform, is 0.03238.
The lower right panel yields the comparison between the
analytically calculated frequencies (red line) versus the numerical
obtained ones (the blue triangles), as r varies between 0.1 and 14.

coupled to an anti-dark soliton, i.e. a density hump (instead of
a dip) on top of a finite background, in the second component.

In figure 9, we show a particular example of the DD
soliton in the trap, which oscillates around its centre; the
parameter values are μ = 1, η = 0.6, initial soliton position
x0(t = 0) = 2.5 and trap strength � = 0.05. Note that for
these runs, the initial profile of the beating DD soliton in
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Figure 10. The comparison of the oscillation of the density of a DD
soliton within a trap of trap frequency � = 0.05 for different values
of g; left and right panels depict the first and second component,
respectively. The soliton is initialized at x0 = 2.5; g is set to be 1.1
(top panels), 1.2 (middle panels), 1.6 (bottom panels) for the
combination of the scattering length g11 : g12 : g22 = g : 1 : 1. Other
parameters are similar to those in figure 9.

the trap is approximated by the numerically found (in trap)
ground state—i.e. the Thomas–Fermi cloud—multiplied by
the beating DD solution (without a trap) of equations (13, 14).
Then via a time-stepping algorithm (a fourth-order Runge–
Kutta scheme), we obtain the time evolution of the densities
of the oscillating solitons in the upper two panels. Moreover,
the lower-left panel shows the centre of mass of the beating
DD soliton in the trap. Using Fourier analysis, we can infer
the numerical frequency of in-trap oscillation, which can, in
turn, be compared to the analytical one, cf equation (22). As
shown in the bottom-right panel of the figure, there is a very
good agreement between the two.

Next, we consider the in-trap dynamics of a single-
beating DD soliton but for the non-integrable cases. Again,
when g11 : g12 : g22 = 1.03 : 1 : 0.97, we observe
a nearly identical phenomenology to that of unit gi js. For
the more significant deviations from that case of the form
g11 : g12 : g22 = g : 1 : 1 where g = 1.1, 1.2, 1.6,
the results are reported in figure 10. For lower values of
g = 1.1, 1.2, the behaviour of the DD is similar to the case with
g = 1; however, we progressively observe more significant
radiative emissions which also affect the oscillation frequency.
However, once again the modifications of the phenomenology
are most dramatic in the case of g = 1.6 of the bottom panels.
There, the radiation emission is accompanied by growing
intrinsic oscillations which eventually result in the breakup
and formation of a single dark–anti-dark solitary wave.

5. Two DD soliton states: dynamics and interactions

We now consider the interactions of two-beating DD solitons.
We once again start from the untrapped case and use as an
initial ansatz a two-DB soliton state of the form

u1 = (cos φ tanh ξ− + i sin φ)(cos φ tanh ξ+ − i sin φ), (33)
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Figure 11. Space–time contour plots of two-beating DD soliton
densities in-phase (left) and out-of-phase (right) for
g11 = g12 = g22 = 1 . Here χ = π/4, η = 0.5, x0 = 1.5, D = 1.2.

u2 = η sech ξ−ei (kx+θ (t)) + ei �θη sech ξ+ei (−kx+θ (t)), (34)

where ξ± = D(x ± x0), 2x0 is the relative distance between
the two solitons and �θ is the relative phase between the
two bright solitons. Below we consider both the out-of-phase
(OOP) case, �θ = π , as well as the in-phase (IP) case �θ = 0.
Once again taking advantage of the model invariance under the
SO(2) rotations, as we did for the single-DD soliton case, we
use the orthogonal matrix (12) and obtain a two-beating DD
soliton ansatz in the form

u1 = cos(χ ) (cos φ tanh ξ−+ i sin φ) (cos φ tanh ξ+− i sin φ)

− sin(χ )(η sech ξ−ei (kx+θ (t)) + ei �θη sech ξ+
×ei (−kx+θ (t))), (35)

u2 = sin(χ ) (cos φ tanh ξ−+ i sin φ) (cos φ tanh ξ+− i sin φ)

+ cos(χ )(η sech ξ−ei (kx+θ (t)) + ei �θη sech ξ+
×ei (−kx+θ (t))). (36)

In our numerical study for the dynamics of the two-
beating DD soliton state, we first consider the integrable
case, corresponding to g11 = g12 = g22 = 1, both for the
IP and OOP cases. The results of the simulations, using
initial conditions corresponding to the above ansatz, are
shown in figure 11. In the IP case, the repulsion between
the beating DD solitons is immediately evident resulting in
the strong separation of the two waves (which still perform
their internal beating). On the other hand, in the OOP case, the
competition between the repulsion of the dark components and
the attraction between the bright components of the progenitor
DB solitons (see [32]) can be discerned, as the configuration
remains nearly stationary for a lengthy evolution interval.
Finally, however, the repulsive interaction prevails and the
solitons eventually separate.

Next, we consider the non-integrable case. Since for
g11 : g12 : g22 = 1.03 : 1 : 0.97, the phenomenology
is again very similar to g11 = g12 = g22, we consider the
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Figure 12. Space–time contour plots of two DD soliton densities
in-phase (left) and out-of-phase (right) for g = 1.6 in the set
g11 : g12 : g22 = 1.6 : 1 : 1. Here
χ = π/4, η = 0.5, x0 = 1.5, D = 1.2.

significant departure from this limit pertaining to g11 : g12 :
g22 = 1.6 : 1 : 1. In figure 12, we observe that in the IP
case, the two-beating DD solitons initially separate and move
away from each other, then they are reflected from the domain
boundary and a new collision occurs. After this collision,
a highly non-trivial event is observed, namely one of the
two-beating DD solitons is decomposed into a dark–anti-dark
soliton pair, with each of these solitons moving with different
velocities. It should be pointed out here that the reflection from
the domain boundary is a by-product of the no-flux boundary
conditions used in the simulations. Nevertheless, we chose
to illustrate the evolution for such longer times (instead of
truncating it prior to such boundary-induced reflection and
subsequent collision) in order to encompass the interesting
phenomenology of the collision of the reflected waves and in
that light contrast the integrable interaction of figure 11 with
the highly non-integrable one of figure 12. For the OOP case,
the separation arises much faster than for the unit coefficients
and, interestingly, results in an asymmetric evolution with one
of the DD solitons breaking up in a pair of dark–anti-dark
solitons (as in figure 8 of section 2). Note that, as in the IP
case, the other soliton is not broken up in a similar way during
the horizon of the simulation, although it is likely that such an
event will also occur for that wave.

Next, we consider the two-beating DD soliton in the trap,
in the case of unit coefficients. We set V (x) = 1

2�2x2, with
� = 0.05, and the chemical potential μ = 1. From figure 13,
we infer that the two-beating DD solitons are now trapped
and oscillate around an equilibrium position. Note that in the
IP case, the solitons perform OOP oscillations and undergo
quasi-elastic collisions. In the OOP case, the weak residual
repulsion is counter balanced by the presence of the trap, and
we observe that the two-beating DD solitons remain in a close
distance to each other.

Finally, we consider two DD waves with g11 : g12 : g22 =
1.6 : 1 : 1 within the same trap in figure 14. In this case, we
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Figure 13. Space–time contour plots of two-beating DD soliton
densities in-phase (left) and out-of-phase (right) in the case of equal
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Figure 14. Space–time contour plots of two-beating DD soliton
densities in-phase (left) and out-of-phase (right) for the case with
g11 : g12 : g22 = 1.6 : 1 : 1 within a harmonic trap with trap
frequency � = 0.05. The parameters used are the same as for the
previous figure.

observe that despite the presence of the trap, it is not possible
to sustain a robust set of oscillations and interactions between
the beating DD solitons. This is especially true in the OOP
case, where the oscillatory growth of the beating eventually
results in the breakup of the DD soliton states into dark–anti-
dark ones (which generally appear more robust for such higher
values of g).

6. Conclusions and future challenges

In this work, we have studied the stability and dynamics
of beating dark–dark (DD) solitons in pseudo-spinor Bose–
Einstein condensates, motivated by recent experiments where
such structures were observed. We have illustrated the
connection of these solitons with internal density oscillations

to dark–bright (DB) solitons identified earlier, through SO(2)
(and more generally SU(2)) rotations. We have illustrated
that such states persist in the presence of the trap and, in
fact, oscillate with the frequency previously predicted for
DB solitons. Using Floquet analysis, we have also identified
beating DD solitons as stable periodic orbits in the integrable
(Manakov) limit with and without a trap.

We have also investigated in detail the effect of the
deviation from the Manakov case by considering different
from unity scattering length ratios. We have shown that
when the deviation from the integrable case is small (as is
the physically relevant case of a pseudo-spinor condensate
composed by different spin states of rubidium), then
the stability and dynamics of beating DD solitons follow that
of the integrable case. However, we also illustrated that a
significant departure of the ratios of the scattering lengths from
this limit (towards the miscible regime) will eventually break
up beating DD solitons in favour of dark–anti-dark soliton
entities. We have also considered the interaction of beating
DD solitons finding a typically repulsive dynamical behaviour,
which can be attenuated only in the case where the bright
components (of the progenitor DB solitons, used to create the
DD ones) are out-of-phase (and, hence, attracting each other).
In that case, especially in the presence of a trap, a robust set
of multiple beating DD soliton states can be created.

The discussion of DD solitons in this work has focused
upon those states that can be constructed, in the spatially
extended Manakov case, from the SU(2) rotation of a DB
soliton and confined states in the presence of a trapping
potential. In both cases, each component of the DD soliton
exhibits the same background flow velocity. In a series of
experiments [18, 25, 19, 32], a relative flow between two
condensate components induced by a magnetic field gradient
led to DB solitons and counterflow-induced modulational
instability resulting in the formation of a number of beating
DD solitons. It is natural, then, to inquire into the effect that
relative motion between two condensate components has on
localized structures. In the integrable case, the most general
DD soliton was constructed using a Bäcklund transformation
[28]. Because it allows for a counterflow, this soliton is
characterized by eight free parameters in contrast to the seven-
parameter SU(2)-rotated DB soliton studied here or the seven-
parameter static DD soliton [36]. However, and since the
present study focused predominantly on the five-parameter
family stemming from the SO(2) rotation, the persistence,
stability, and interactions of the full seven-parameter solitonic
states (and even the eight-parameter generalization thereof
presented within [28]) in the non-integrable case constitute
themes worthy of further study.

There are many other directions that are worth considering
further along the lines of this work. Quantifying further (and
semi-analytically, if possible) the interactions between the
beating DD solitons, as well as studying in more detail the
dark–anti-dark solitons that appear to spontaneously arise from
their breakup in the miscible regime are interesting extensions
of this work in the one-dimensional setting. On the other
hand, one naturally may consider the two-dimensional (2D)
generalization of the considerations herein, especially upon
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bearing in mind that the SU(2) (or SO(2)) rotations used herein
are not restricted to the one-dimensional realm in any particular
way. In that regard, one may envision vortex–bright soliton
states [33] (i.e. the 2D analogue of the DB waves) rotated via
SO(2) to produce vortex–vortex-type states (in analogy with
the DD ones). Such states are currently under study and will
be reported in future publications.

Note added in proof. After the submission of this work, Dr A Nicolin
informed one of us (PGK) about a recent preprint related to immiscible two-
component Bose–Einstein condensates and the Faraday wave patterns that can
arise in them. The relevant work has now been published as [37].
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Malomed B A, Frantzeskakis D J and Bishop A R 2007
Phys. Rev. A 75 055601

[30] Mertes K M, Merrill J, Carretero-González R,
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and Schmelcher P 2011 arXiv:1104.4359

[33] Law K J H, Kevrekidis P G and Tuckerman L S 2010 Phys.
Rev. Lett. 105 160405

[34] Susanto H, Cuevas J and Krüger P 2011 J. Phys. B: At. Mol.
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