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a b s t r a c t

We study the discrete nonlinear Schrödinger lattice model with the onsite nonlinearity of the general
form, |u|2σu. We systematically verify the conditions for the existence and stability of discrete solitons
in the one-dimensional version of the model predicted by means of the variational approximation
(VA), and demonstrate the following: monostability of fundamental solitons (FSs) in the case of the
weak nonlinearity, 2σ + 1 < 3.68; bistability, in a finite range of values of the soliton’s power, for
3.68 < 2σ + 1 < 5; and the presence of a threshold (minimum norm of the FS), for 2σ + 1 ≥ 5. We
also perform systematic numerical simulations to study higher-order solitons in the same general model,
i.e., bound states of the FSs.While all in-phase bound states are unstable, stability regions are identified for
antisymmetric double solitons and their triple counterparts. These numerical findings are supplemented
by an analytical treatment of the stability problem, which allows quantitively accurate predictions for
the stability features of such multipulses. When these waveforms are found to be unstable, we show, by
means of direct simulations, that they self-trap into a persistent lattice breather, or relax into a stable FS,
or sometimes decay completely.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Discrete nonlinear Schrödinger (DNLS) equations represent a
vast class of dynamical lattice models with many mathematical
and physical applications [1]. The DNLS equation with the onsite
cubic nonlinearity models, among others, an array of nonlinear-
optical waveguides [2], that was originally implemented in an
experiment as a set of parallel ribs made of a semiconductor
material (AlGaAs) and mounted on a common substrate [3] (see
also reviews [4]). Quasi-discrete optical waveguide arrays can
also be created as virtual photonic lattices in photorefractive
crystals [5], the appropriate model being the DNLS with the
saturable nonlinearity, known as the Vinetskii–Kukhtarev model,
that was introduced more than 30 years ago [6], and has drawn a
great deal of interest recently [7].
It was predicted [8] that the DNLS equation may also serve as

a model for Bose-Einstein condensates (BECs) trapped in a strong
optical lattice (a sinusoidal potential created by the interference
of laser beams), which was confirmed by experiment [9] (see also
the review [10]). In addition to the direct physical realizations in
terms of nonlinear optics and BECs, the DNLS equations appear as
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universal asymptotic forms of various models based on chains of
coupled oscillators. Accordingly, the solitons known in the DNLS
equation represent intrinsic localized modes investigated in such
chains theoretically [11] and experimentally [12].
Fundamental states supported by the DNLS equations are

discrete solitons. In the DNLS equation with cubic and saturable
nonlinearities, the solitons have been studied in detail (first
of all, in one-dimensional models, but many results have been
also obtained for two- and three-dimensional DNLS lattices) [1].
Equations with more complex nonlinearities are of interest too.
In particular, applications to optics suggest the consideration
of solitons in the DNLS equation with the onsite nonlinearity
combining self-focusing cubic and self-defocusing quintic terms.
Recently, localized states in this one-dimensional discrete model
with the competing nonlinearities were studied in detail in
Ref. [13], where it was shown that novel classes of solutions can
be introduced by this competition. On the other hand, a subject of
general interest is also the study of various species of solitons and
their stability in the DNLS equation with arbitrary onsite power
nonlinearity, i.e.,

iu̇n = −ε (un+1 + un−1 − 2un) un − |un|2σun, (1)

where un(t) are the lattice dynamical variables, the overdot stands
for the time derivative, ε > 0 is the lattice coupling constant
and σ > 0 determines the nonlinearity power. This model was
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Fig. 1. Typical profiles of fundamental solitons and bound states in the DNLS equation with the quintic nonlinearity, σ = 2. A fundamental pulse is shown in panel (a) for
ε = 1; Triangles represent the profile predicted by the VA. Double pulses: in-phase ones, structured like (1, 0, 1), for ε = 0.2 (b), and out-of-phase double pulses, of the
type (1, 0,−1), for ε = 0.5 (c). Triple pulses: of types (1, 0, 1, 0, 1) for ε = 0.2 (d), and (1, 0,−1, 0, 1) for ε = 0.5 (e). In all figures, except for Fig. 3, the solitons and their
families are shown for the intrinsic frequency fixed by the scaling,Λ ≡ 1.

introduced in Ref. [14] (see also Ref. [15]), where, in particular,
quasi-collapse was studied, in the case of σ ≥ 2 (the critical or
supercritical collapse [16] takes place in the continuum limit of
the one-dimensional Eq. (1), i.e., the ordinary NLS equation, with
σ = 2 and σ > 2, respectively). The case of σ = 2, i.e., the quintic
nonlinearity in Eq. (1), has also been argued to be of relevance in
the case of BECs. In particular, in the limit of very tight transverse
confinement and for sufficiently low densities, an atomic BEC
with repulsive interactions behaves like a one-dimensional gas of
impenetrable bosons, the so-called Tonks–Girardeau gas [17]. In
the framework of mean-field theory, it has been proposed that
such a bosonic gas, behaving like a system of free fermions, may
be described by the continuum NLS equation with the defocusing
(self-repulsive) quintic nonlinearity (without the cubic term) [18].
Then, similarly to the case of regular BECs, if this Tonks–Girardeau
gas is trapped in a strong optical-lattice potential [19], it may be
described by the DNLS Eq. (1) with σ = 2 [strictly speaking,
with the opposite sign in front of the nonlinear term; however,
the equation may be cast in the form of Eq. (1) by means of the
staggering transformation [1], i.e., un ≡ (−1)ne−4iεt ũ∗n].
Quite general predictions for solitons in the DNLS Eq. (1) were

made, on the basis of the variational approximation (VA), in
Ref. [20]:

(i) There is a critical value of the nonlinearity power, σcr ≈ 1.42,
such that, for σ < σcr, exactly one soliton can be found for
each value of the norm, P ≡

∑
+∞

n=−∞ |un|
2 (that is, there no

threshold for the existence of the solitons, and no bistability).
(ii) In the range of σcr < σ < 2, three different solitons
coexist in a certain finite interval of values of P , two stable
and one unstable (It is worthwhile to note here that there
is no such multistability in the continuum limit of the DNLS
equation, where, in fact, solutions are analytically available
for any σ [21]). This feature has been used in [22] to produce
controllable switching (via the use of an internal mode) from
one of these two stable stationary states to the other.

(iii) For σ ≥ 2, there exists a threshold (minimum norm)
necessary for the existence of solitons. For σ > 2, there exist
two solitons above the threshold, one narrow (stable), and one
broad (unstable).

As concerns the predictions for stability, they were made
in Ref. [20] on the basis of the extrapolation of the Vakhi-
tov–Kolokolov (VK) stability criterion [23], which is well known as
a necessary condition for the stability of solitons in continuumNLS
equations [16]. This generalization is natural for fundamental solu-
tions, since the DNLS can be cast in the general Hamiltonian frame-
work of [24], for which the VK criterion has been established as
governing the stability of such solutions. The criterion states that,
if a family of stationary soliton solutions can be found as

un(t) = eiΛtvn, (2)

with real frequency−Λ and real stationary function vn, the soliton
family may be stable in a region where dP/dΛ > 0, and it is
definitely unstable otherwise (the VK criterion is only a necessary
one, as it ignores possible oscillatory instability of the solitons, that
would be accounted for by complex instability eigenvalues, see
below).
While the above predictions are quite important, they have

never been subjected to consistent numerical verification, as far
as we know. This is the first objective of the present work (the
results essentially confirm the conclusions produced by the VA and
VK criteria, with a difference that a numerically accurate critical
value of the power of the onsite nonlinearity is σcr ≈ 1.34, instead
of the above-mentioned approximation, σcr ≈ 1.42). Following
this line of the analysis, in Section 2, we recapitulate the VA
for the fundamental (single-humped) solitons in Eq. (1), and in
Section 3 systematic numerical results are reported, which verify
the predictions of the VA.
Another objective of the work is to theoretically analyze

and numerically construct higher-order (multi-humped) states,
i.e., bound states of the fundamental solitons (FS). In the DNLS
equation with the cubic nonlinearity, they were introduced
in Ref. [25]. A general principle which predicts their stability
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Fig. 2. Families of fundamental solitons (FS) solutions. Left panels: the FS norm versus the coupling constant ε. The center and right panels show, respectively, the real and
imaginary parts of the linear stability eigenvalues λ ≡ λr + iλi , see Eq. (10), versus ε.

was formulated in Ref. [26]: bound states of the FSs with
opposite signs may be stable, while compounds built of in-phase
fundamental solitons are always unstable (see also Refs. [27],
wheremultihumped complexes were studied in a chain of coupled
oscillators and the work of [28], where such states were examined
in one and two dimensions for the cubic nonlinearity). In Section 4,
we present a theoretical analysis for the stability of such multi-
humped states, while in Section 5 we report numerical results
for basic families of the bound states in the present system. In
agreement with the aforementioned principle, the bound states

of two or three in-phase FSs are found to be always unstable
(therefore, they are not considered in detail), while complexes of
out-of-phase two or three FSs may be stable.
In Sections 3 and 5, we also present typical examples of

direct simulations that illustrate the development of instability
of fundamental and bound-state solitons, in cases when they
are unstable. We find that there are three potential outcomes of
these ‘‘numerical experiments’’: the waveforms may transform
themselves into persistent discrete breathers, or relax into stable
FSs, or completely decay into linear waves.
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Fig. 3. The norm of the fundamental-soliton family versusΛ for (a) σ = 1, (b) σ = 1.5, (c) σ = 2, (d) σ = 3. Full lines display numerical results, while the dashed curves
correspond to the predictions of the variational approximation.

Fig. 4. Locations of the two bifurcations that account for the exponential (non-oscillatory) destabilization and subsequent restabilization (the left and right panels,
respectively) of the fundamental solitons (subject to the normalizationΛ ≡ 1) in the plane of (σ , ε). The (blue) line and (red) dots represent predictions of the variational
approximation and numerical results, respectively. The restabilization corresponding to the right panel does not occur for σ ≥ 2.

2. The variational approximation for fundamental solitons

Substituting the general expression (2) for the stationary
solitons in Eq. (1), one arrives at the following equation for the real
discrete waveform vn,

Λvn = ε (vn+1 + vn−1 − 2vn)+ v2σ+1n . (3)

Eq. (3) can be derived from the Lagrangian

L =
+∞∑
n=−∞

[
ε(vn+1 + vn−1)vn − (Λ+ 2ε)v2n +

1
σ + 1

v2(σ+1)n

]
.(4)

The VA for fundamental discrete solutions, elaborated in
Ref. [20] (see also Ref. [13]) was based on the simple exponential
ansatz,

vn = Ae−a|n|, (5)

with variational parameters A and a (which, obviously, determine
the amplitude and inverse size of the soliton). Then, substituting
the ansatz in the Lagrangian, one can perform the summation
explicitly, which yields the effective Lagrangian,

Leff = 2εP sech a− (Λ+ 2ε)P +
Pσ+1

σ + 1
coth ((σ + 1)a)
cothσ+1 a

. (6)

The norm of the ansatz (5), which appears in Eq. (6), is given by

P ≡
+∞∑
n=−∞

v2n = A
2 coth a. (7)

The Lagrangian (6) gives rise to the variational equations,
∂Leff/∂P = ∂Leff/∂a = 0, which constitute the basis of the VA [29].
They predict relations between the norm, frequency, and width of
the FSs within the framework of the VA, namely

Pσ =
4ε coshσ a sinh2(σ + 1)a

sinhσ−1 a(sinh 2(σ + 1)a− sinh 2a)
, (8)

Λ = 2ε(sech a− 1)+ Pσ
coth(σ + 1)a
cothσ+1 a

. (9)

These analytical predictions, implicitly relating P and Λ

through their parametric dependence on a, will be compared with
numerical findings below.

3. Numerical results: Fundamental solitons

Using the scaling invariance of Eq. (3), we will present
numerical findings for Λ ≡ 1 (in most cases), using ε and σ as
free parameters. We display numerically obtained results for FSs
in Eq. (1) with four distinct values of the nonlinearity power, viz.,
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Fig. 5. Typical examples of weakly and strongly unstable fundamental solitons, corresponding, respectively, to σ = 1.5, ε = 2 (top) and σ = 2, ε = 1.5 (bottom). The
left panels show the spectral planes of the instability eigenvalues for small perturbations around the soliton. The temporal development of the instabilities is shown in
the central and right panels, by means of density contours and three-dimensional plots. The weak instability turns the soliton into a persistent breather, while the strong
instability destroys it. In the direct simulations, perturbations are generated solely by numerical truncation errors.

Fig. 6. The same as in Fig. 5 for a moderately unstable symmetric double pulse of type (+1, 0,+1), with σ = 3 and ε = 1. The instability transforms it into a fundamental
soliton with residual intrinsic oscillations that gradually decay.

σ = 1, 1.5, 2, 3. As explained in Introduction, σ = 1 and 2,
corresponding to the cubic and quintic nonlinearity, respectively,
are relevant to applications in nonlinear optics and BECs.
Localized real solutions vn to Eq. (3) were found starting from

the anti-continuum limit, ε = 0, where they can be constructed
trivially, and continuing them up to a required value of ε. After
that, the stability of the solitonswas analyzedby taking a perturbed
solution in the form

un(t) = eiΛt
[
vn + an exp(−λt)+ b∗n(λ

∗t)
]
, (10)

and linearizing Eq. (1) with respect to small perturbation modes
an and bn. This leads to an eigenvalue problem (for the instability
growth rate λ, that may be complex), based on the following
coupled linear equations,

iλan = −ε∆2an +Λan − (σ + 1)v2σn an − σv
2σ
n bn,

iλbn = ε∆2bn −Λbn + (σ + 1)v2σn bn + σv
2σ
n an.

(11)

This problem was solved by a standard numerical eigenvalue
solver.
First, typical examples of numerically found FSs, as well as

double and triple bound states of in-phase and out-of-phase (sign-
changing) types, are displayed in Fig. 1. The FSs exist at all values of
ε for allΛ. In the cubic model, with σ = 1, they are stable for all ε,
which is a well-known fact [1]. However, in the model with higher
nonlinearities, σ = 2 (quintic) and σ = 3, they are stable only in
finite intervals, 0 < ε < 1.079 and 0 < ε < 0.679, respectively.
For the quartic nonlinearity, with σ = 1.5, the FS solutions are

stable in two intervals: a finite one, 0 < ε < 1.482, and a
semi-infinite region, ε > 3.437. These results are summarized in
Fig. 2, which clearly demonstrates that shapes of the FS family, if
represented in the form of the P(ε) dependence, are nearly the
same for all the aforementioned values of σ , while their stability
properties are drastically different.
Stability changes are closely related to the above-mentioned

VK criterion, dP/dΛ > 0. Fig. 2 shows P as a function of ε for fixed
Λ ≡ 1, therefore the VK criterion cannot be directly applied to it.
However, rescaling vn ≡ (2ε)1/2(σ+1) ṽn, i.e., P ≡ (2ε)1/(σ+1) P̃ ,
one can cast the stationary Eq. (3) with Λ = 1 and arbitrary ε in
a different form, with ε = 1/2 and Λ = 1/ (2ε), which yields
plots P(Λ) shown in Fig. 3, together with the same dependencies
predicted by the VA as per Eqs. (8) and (9). The comparison with
results of the computation of the stability eigenvalues from Eq.
(11) demonstrates that the stability change takes place exactly at
points dP/dΛ = 0, as expected (per our arguments above), in full
agreement with the VK criterion. The two sign changes of dP/dΛ
also explain the bistability observed (in Fig. 2) at σ = 1.5.
As shown in Ref. [20], the VA predicts that all FSs are stable for

σ < σcr ≈ 1.42, with a single FS corresponding to each value
of P , and that bistability arises in a finite interval of values of the
norm in the FS family, for 1.42 < σ < 2. Further, for σ ≥ 2,
there is a threshold (minimum) value of the norm, Pthr, necessary
for the existence of the solitons. For σ > 2, there are two FS
families with P > Pthr, one stable and one unstable. The numerical
results confirm all these conclusions, with a difference that the
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Fig. 7. The same as Fig. 2, but for the family of antisymmetric double solitons of type (+1, 0,−1).

numerically found value of σcr is lower than the aforementioned
one predicted by the VA, viz., σcr = 1.34 (rather than σcr = 1.42).
Getting back to the normalization with Λ ≡ 1 and varying ε,

we notice that the predictions of the VA can be reformulated as
follows. At σ < σcr, the FSs are stable for all ε. In the case of
σcr < σ < 2, the solitons are stable in intervals 0 < ε < ε1(σ )

and ε > ε2(σ ), being unstable in between, at ε1(σ ) < ε < ε2(σ ).
Here, ε1(σ ) and ε2(σ ) represent the stability borders shown in the
left and right panels of Fig. 4. Both the destabilization of the FS
at ε = ε1(σ ) and its restabilization at ε = ε2(σ ) are accounted

for by the sign change in the VK criterion, hence these bifurcations
are related to the exponential (non-oscillatory) instabilities, which
occur via real eigenvalues λ. These eigenvalues, as can be seen
in the right and middle panels of Fig. 2, bifurcate from the lower
edge of the phonon band at λi = Λ at some nonzero value of ε
and subsequently move towards λ = 0. In subcritical cases, they
only arrive there as ε → ∞; for cases with σcr < σ < 2, they
cross it twice, leading to the bistability feature, while for σ ≥ 2,
they only cross it once. Note that ε → ∞ corresponds to the
continuum limit, which explains why the restabilization occurs
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Fig. 8. The same as in Figs. 5 and 6, but for unstable double antisymmetric solitons of type (+1, 0,−1), with σ = 3 and ε = 1 (top) and ε = 1.5 (bottom).

only for σ < 2, and is impossible for σ ≥ 2 (formally speaking,
this means ε2(σ = 2) = ∞): the continuum one-dimensional
NLS equations with the nonlinearity corresponding to σ ≥ 2
gives rise to collapse [16], hence the solitons in this continuum
equation are unstable. Fig. 4 demonstrates that the VA predicts
both bifurcations, at ε = ε1,2(σ ), in a qualitatively correct form,
although it is less accurate quantitatively in the vicinity of the
transition points σ = σcr and σ = 2. One expects that, in the
neighborhood of these, the detailed structure of the solitonmay be
relevant and hence its simple exponential representation by theVA
may not be sufficient for quantitative purposes.
To complete the consideration of the fundamental solitons, we

have simulated the evolution of those among them which are
predicted to be unstable by the VK criterion and computation of
the stability eigenvalues (see Eq. (11)). As shown in the upper part
of Fig. 5, the milder instability (i.e., with smaller growth rate as
represented by the largest eigenvalue real part) of the soliton in
the window ε1 < ε < ε2, which is possible in the case of σcr =
1.34 < σ < 2, transforms it into a persistent lattice breather,
as mentioned in Ref. [14] (although the original instability is not
oscillatory, see above). On the other hand, the stronger instability
of the soliton in the examined case for ε > ε2, at σ ≥ 2 at the
bottom panel of the Fig. 5, tends to completely destroy the soliton.

4. Analytical results: Multisoliton bound states

We now turn to multisoliton bound states, adapting the
analytical techniques of [30] to the present problem. In particular,
starting from the Eq. (11), we use the decomposition an = zn+ iwn,
bn = zn − iwn, to rewrite the eigenvalue problem as

−λwn = L+zn = −ε∆2zn +
(
1− (2σ + 1)v2σn

)
zn (12)

λzn = L−wn = −ε∆2wn +
(
1− v2σn

)
wn. (13)

Combining these equations one obtains λ2wn = −L+L−wn.
Near the anti-continuum limit of ε = 0, for each of the excited sites
(with |vn| = 1), the action of the L+ simplifies into a multiplicative
operation, which allows us to invert the operator and accordingly
obtain the equation for the eigenvalues

λ2 = −
(w, L−w)
(w, L−1+ w)

, (14)

where w is the vector with elements wn. Then, using the fact that
limε→0(w, L−1+ w) = −(2σ)−1, we obtain the following expression
for the eigenvalues

λ2 =
√
2σ (w, L−w) (15)

as the appropriate generalization of Eq. (3.11) of [30]. However,
following the theory of [30], the eigenvalues of L− can be evaluated
as εsγ . In the above expression, s is the distance between the sites
of the configuration (e.g., for nearest-neighbors s = 1, while for
next-nearest-neighbors s = 2, for the configurations considered
herein), while the γ ’s are the eigenvalues of the L×Lmatrix (where
L is the number of sites excited in the anti-continuum limit) with
off-diagonal entries: Mn,n+1 = Mn+1,n = − cos(θn+1 − θn) and
diagonal entries Mn,n = (cos(θn−1 − θn)+ cos(θn+1 − θn)). In the
case of L = 2 excited sites, it is straightforward to obtain that
γ = 0 or γ = 2 cos(θ1−θ2), where θ1,2 are the respective phases of
the sites in the limit of ε = 0. On the other hand, for L = 3 excited
sites, there is a γ = 0 eigenvalue, in addition to two non-vanishing
ones

γ1 = cos(θ2 − θ1)+ cos(θ3 − θ2)

±

√
cos2(θ2 − θ1)− cos(θ2 − θ1) cos(θ3 − θ2)+ cos2(θ3 − θ2). (16)

Similarly to [30], one can observe that the configurations that
will be stable are the ones where adjacent excited sites are out
of phase with each other. Focusing, in particular, on the examples
that will be presented in detail in the numerical section below,
we have concluded that for the configuration (+1, 0,−1), the
above calculation predicts that the small (near zero) eigenvalues
will be λ = 0 and λ = ±i2

√
σε. On the other hand, for the

case of (+1, 0,−1, 0,+1), also examined below, our theoretical
prediction is that the three relevant small eigenvalue pairs should
be λ = 0, λ = ±i

√
2σε and λ = ±i

√
6σε. We now turn to

a comparison of the full numerical results with these analytical
predictions.

5. Numerical results: Multisoliton bound states

5.1. Two-humped states

Fig. 1 shows various types of two- and three-humped stationary
solutions, that may be regarded as in-phase and out-of phase
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Fig. 9. Same as Figs. 2 and 7, but for the family of triple solitons of type (+1, 0,−1, 0,+1).

bound states of the FSs. In accordance with the general prediction
of Ref. [26], the in-phase bound states, of types (+1, 0,+1) and (+1,
0,+1, 0,+1) (panels (b) and (d) in Fig. 1 are unstable for allnonzero
values of the lattice coupling, ε > 0. Direct simulations, displayed
in Fig. 6, demonstrate that the unstable two-humped states may
relax, through oscillatory evolution, into a stable FS. Similar results
are demonstrated bydirect simulations of the evolution of unstable
three-humped states of type (+1, 0,+1, 0,+1) (not shown here).
On the other hand, antisymmetric bound states of type (+1,

0, −1), see Fig. 1(c), may be stable, in consonance with our
theoretical predictions. Existence and stability conditions for the

antisymmetric double solitons are summarized in Fig. 7. Theywere
found to exist below a maximum value of ε, which is εmax =
1.086, 1.789, 2.584 and 4.426, for σ = 1, 1.5, 2, and σ = 3,
respectively (the presence of the upper limit for their existence is
natural, as they, obviously, have no counterparts in the continuum
limit, which corresponds to ε → ∞). For more details on
the nature and bifurcation structure of the termination of such
branches, the interested reader is directed to the detailed study
of [31]. On the other hand, these branchesmaybecomeunstable for
ε > ε

(1)
cr , where the critical values are ε

(1)
cr = 0.431, 0.331, 0.264

and 0.192, for σ = 1, σ = 1.5, σ = 2 and σ = 3, respectively.
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Fig. 10. The same as in Figs. 8 and 5, but for unstable three-humped solitons of type (+1, 0,−1, 0,+1), with σ = 3 and ε = 0.3 (top), ε = 0.5 (center), and ε = 2 (bottom).

Beyond this critical point, the antisymmetric double soliton
undergoes destabilization via a Hamiltonian Hopf bifurcation,
originating from the collision of two imaginary eigenvalues with
opposite Krein signature [24,30]. One of these two eigenvalues is
the small eigenvalue, bifurcating from λ = 0 for ε 6= 0, according
to our theoretical predictions of the previous section. Notice the
level of agreement between the theoretical prediction and the
numerical results for these eigenvalues in the right panels of Fig. 7.
The coupling strength for which this eigenvalue ±2ε

√
σ i reaches

the bottomof the phonon band±i (0.5, 0.4082, 0.3536 and 0.2887
for σ = 1, 1.5, 2, 3, respectively) yields a fair upper bound
for the relevant critical point, since the collision occurs with an
eigenvalue bifurcating from the phonon band edge. This scenario
is fundamentally different from the above-described situation
for the FSs, which could be destabilized only by non-oscillatory
instabilities, associated with real eigenvalues. For values of ε >
ε
(1)
cr , the antisymmetric double solitonsmay becomemore unstable
due to a real eigenvalue pair emerging through a mechanism
similar to the one discussed in the case of the FSs, beyond a second
critical value, ε(2)cr = 1.002, 1.283, 1.251, and 0.961 for σ = 1,
σ = 1.5, σ = 2 and σ = 3, respectively.
If an antisymmetric double soliton is unstable, direct simula-

tions demonstrate either spontaneous transformation into a FS, or
complete decay. Typical examples of the instability development
are presented in Fig. 8.

5.2. Three-humped states

It wasmentioned above that in-phase bound states of three FSs,
like the one displayed in Fig. 1(d), are unstable. On the other hand,
sign-changing triple bound states, of the type (+1, 0,−1, 0,+1), an
example of which is displayed in Fig. 1(e), may be stable. Similarly
to other bound states, solitons belonging to this species feature an
upper existence limit, ε < εmax = 1.066, 1.758, 2.544, and 4.369

for σ = 1, σ = 1.5, σ = 2 and σ = 3, respectively. Like in
the case of antisymmetric double solitons considered above, the
stability region of the triple states is bounded by the condition ε ≤
ε
(1)
cr = 0.375, 0.284, 0.227, and 0.165 for σ = 1, σ = 1.5, σ = 2
and σ = 3, respectively. At ε − ε(1)cr → 0, the triple solitons are
destabilized through a Hamiltonian Hopf bifurcation. This occurs
between the largest one of the two small pairs of eigenvalues of
this case (theoretically predicted as ±

√
6σεi and ±

√
2σεi) and

the lower edge (or an eigenvalue bifurcating from the lower edge)
of the phonon band. Once again, the theoretical prediction for the
collision of the largest eigenvalue with the phonon band edge,
being ε = 0.4082, 0.3333, 0.2887 and 0.2357, yields a reasonable
upper bound for the location of the relevant destabilization point.
Naturally, an additional Hopf bifurcation occurs at ε =

ε
(2)
cr = 0.548, 0.447, 0.363, and 0.266 for σ = 1, 1.5, 2, and
σ = 3, respectively, due to the collision of the second small
pair of eigenvalues with an eigenvalue pair bifurcating from the
phonon band. Finally, in addition to these two Hamiltonian Hopf
bifurcations, resulting in two quartets of eigenvalues, there is also
an exponential instability which occurs for ε = ε

(3)
cr = 1.066,

ε = 1.758, ε = 1.489 and ε = 1.224 for σ = 1, σ = 1.5,
σ = 2 and σ = 3, respectively. All of these findings concerning
the existence and stability of the triple solitons are summarized in
Fig. 9.
Typical examples of the evolution of unstable three-humped

states are displayed in Fig. 10. It is seen that they either relax into
stable FS, whichmay be accompanied by emission of radiation jets,
or they may completely decay.

6. Conclusion

Concluding, we have revisited the discrete-NLS model in one
dimension, with the onsite nonlinearity of arbitrary power. One
objective was to check the validity of the predictions of the
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VA (variational approximation), reported in Ref. [20] more than
ten years ago, against systematic numerical results. We have
demonstrated that the qualitative predictions of theVAare correct:
monostability of the FSs (fundamental solitons) in the case of the
weak nonlinearity (with power 2σ + 1 < 3.68, which includes
the cubic nonlinearity); bistability, in a certain interval of values
of the soliton’s power, for 3.68 < 2σ + 1 < 5; and the
presence of a threshold (minimum value of the norm), necessary
for the existence of the solitons, for 2σ + 1 ≥ 5, i.e., for quintic
and stronger nonlinearities. The only essential correction to the
VA results is that the border between the weak and moderate
nonlinearity was predicted by the VA at 2σ + 1 ≈ 3.84, which
slightly differs from the aforementioned numerically exact value,
3.68.
The second part of the present work was dealing with bound

states of FSs in the same class of models. Both through analytical
considerations and through numerical results, it was concluded
that, as predicted earlier, all in-phase bound states are unstable,
while antisymmetric double solitons and their sign-changing triple
counterparts have finite stability regions, which were identified
by means of theoretical prediction and numerical computation of
the relevant linear stability eigenvalues. In addition, evolution of
unstable solitons of various types has been explored with the help
of direct simulations. It was found that they may self-trap into a
persistent breather, or relax into a stable FS, or suffer complete
decay.
The new results for the DNLS model with the quintic

nonlinearity may be of relevance to the Tonks–Girardeau gas (the
BEC of hard-core bosons) trapped in a strong optical lattice. For
this and other applications, it should be quite interesting to extend
the analysis to similar lattice models in higher dimensions. Such
investigations are currently in progress and will be reported in
future publications.
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