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Abstract. We derive lower bounds on the power of breather solutions ψn(t) =
e−iΩtφn, Ω > 0 of a Discrete Nonlinear Schrödinger Equation with cubic
or higher order nonlinearity and site-dependent anharmonic parameter, sup-
plemented with Dirichlet boundary conditions. For the case of a defocusing

DNLS, one of the lower bounds depends not only on the dimension of the
lattice, the lattice spacing, and the frequency of the periodic solution, but also
on the excitation threshold of time periodic and spatially localized solutions
of the focusing DNLS, proved by M. Weinstein in Nonlinearity 12, 673–691,
1999. Our simple proof via a direct variational method, makes use of the inter-
polation inequality proved by Weinstein, and its optimal constant related to
the excitation threshold. We also provide existence results (via the mountain
pass theorem) and lower bounds on the power of breather solutions for DNLS
lattices with sign-changing anharmonic parameter. Numerical studies consid-
ering the classical defocusing DNLS, the case of a single nonlinear impurity,
as well as a random DNLS lattice are performed, to test the efficiency of the

lower bounds.
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1. Introduction

In this paper, we study solutions of a generalized DNLS equation, supplemented
with Dirichlet boundary conditions

iψ̇n + ε(∆dψ)n − Λn|ψn|
2σψn = 0, ||n|| ≤ K,(1.1)

ψn = 0, ||n|| > K,(1.2)

where ||n|| = max1≤i≤N |ni| for n = (n1, n2, . . . , nN ) ∈ ZN . In other words
we consider the DNLS equation (1.1) in the finite lattice ZN

K = ZN ∩ {−K ≤
n1, n2, . . . , nN ≤ K}. In (1.1), ε > 0 is a discretization parameter ε ∼ h−2 with h
being the lattice spacing, and (∆dψ)n stands for the N -dimensional discrete Lapla-
cian

(∆dψ)n∈ZN =
∑

m∈Nn

ψm − 2Nψn,(1.3)

where Nn denotes the set of 2N nearest neighbours of the point in ZN with label
n.

Note especially that we take the nonlinearity parameter Λ := (Λn)||n||≤K ∈

R(2K+1)N

in Equation (1.1) to be site-dependent. We consider three possible alter-
native cases for Λ:

(F ) (Focusing case) Λn ≤ 0, n ∈ ZN
K and Λ 6= 0 (Λ ∈ R(2K+1)N

is not
identically the zero vector having at least one negative coordinate).

(D) (Defocusing case) Λn ≥ 0, n ∈ ZN
K and Λ 6= 0 (Λ ∈ R(2K+1)N

is not
identically the zero vector having at least one non-negative coordinate).

(SC) (Sign-changing case) In some S+ ⊂ ZN
K , {Λn}n∈S+ > 0 and in S− :=

ZN
K \ S+, {Λn}n∈S−

≤ 0, where {Λn}n∈S−
6= 0 (not identically the zero

vector in S−).

The solutions we consider to (1.1) are restricted to time-periodic solutions of the
form

(1.4) ψn(t) = e−iΩtφn, Ω > 0,

where the sign of Ω is crucial to our study.
We can associate a power to any solution of the form (1.4), defined as

(1.5) P [φ] =
∑

n∈ZN

|φn|
2

Our paper is devoted to an analytic and numerical study of lower bounds on the
power of solutions of the form (1.4) to (1.1) as functions of Λ and the other pa-
rameters of the problem. We concentrate on the Defocusing and the Sign-changing
cases. Although historically the main interest was in the focusing case, more re-
cently interest has grown in the other two cases, starting perhaps with the paper
by Kivshar in 1993 [10].

A characteristic example of a site dependent nonlinearity parameter covered by
conditions (D) or (SC), is that of a single nonlinear impurity at the origin n = 0,
see M. I. Molina [13, 15], M. I. Molina & H. Bahlouli [14], G. P. Tsironis, M. I.
Molina & D. Hennig [16]. Another recent example of work on an inhomogeneous
lattice is [11].

Solutions (1.4) are usually called breathers (or sometimes solitons), from the
comparison with a class of exact solutions of the sine-Gordon equation of the same
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name. We note that there is a growing interest in the study of such modes in
discrete lattices. A number of papers have studied the stability analysis of such
solutions in both cubic and saturable DNLS lattices (c.f. [1, 5, 18]).

A key work in this area on existence of solutions is the 1999 paper by Weinstein
[17] on the focusing case (F) of (1.1) with constant Λ. Since we make extensive
use of the results in [17], we briefly summarise these here to make our paper more
self-contained. In this paper Weinstein considered the focusing Discrete Nonlinear
Schrödinger Equation (DNLS) [4, 9]

(1.6) iψ̇n + ε(∆dψ)n + |ψn|
2σψn = 0, σ > 0, n = (n1, n2, . . . , nN) ∈ Z

N ,

and resolved the hypothesis suggested by S. Flach, K. Kladko & R. MacKay [6]
for this equation, on the existence of excitation thresholds for the existence of
nonlinear localized modes for Hamiltonian dynamical systems defined on multidi-
mensional lattices. More precisely, the numerical studies and heuristic arguments
of [6], suggested that there is a lower bound on the energy of a breather (time
periodic and spatially localized standing wave solutions), if the lattice dimension is
greater than or equal to a certain critical value. The hypothesis of [6] was resolved
by

Theorem 1.1. (M. Weinstein [17, Theorem 3.1,pg. 678]). Let σ ≥ 2
N

. Then
there exists a ground state excitation threshold Rthresh > 0.

A minimizer of the variational problem

IR = inf {H[φ] : P [φ] = R} .(1.7)

is called a a ground state [17, Definition, pg. 676]. Here the Hamiltonian H[φ] and
the power P [φ] are the fundamental conserved quantities, where

H[φ] = ε(−∆dφ, φ)2 −
1

σ + 1

∑

n∈ZN

|φn|
2σ+2.(1.8)

Theorem 1.1, states that if 0 < σ < 2
N

, then IR < 0 for all R > 0. That
is, the variational problem (1.7) has a solution for all R > 0 and there is no
excitation threshold. However when σ ≥ 2

N
, there exists an excitation threshold

Rthresh such that (a) if R > Rthresh then IR < 0, and a ground state exists and
(b) if R < Rthresh then IR = 0, and there is no ground state minimizer of (1.7).

Theorem 1.1, justifies the existence of an excitation threshold for spatially
localized and time periodic solutions of the form

ψn(t) = eiωtφn, ω > 0, n ∈ Z
N , t ∈ R,(1.9)

φn ∈ `2.

The threshold value, Rthresh, is related to the best constant of an interpolation in-
equality which is a discrete analogue of the Sobolev-Gagliardo-Nirenberg inequality.

Theorem 1.2. (M. Weinstein [17, Theorem 4.1,pg. 682]) Assume that σ ≥ 2
N

.

Then there exists C > 0, such that for all φ ∈ `2, the following interpolation
inequality holds

∑

n∈ZN

|φn|
2σ+2 ≤ C

(

∑

n∈ZN

|φn|
2

)σ

(−∆dφ, φ)2.(1.10)
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If C∗ is the infimum over all such constants for which inequality (1.10) holds,
then the excitation threshold Rthresh is defined by [17, pg. 680, Eqn. (4.2)]

(σ + 1)ε (Rthresh)
−σ

= C∗,(1.11)

and the optimal constant C∗ has the variational characterization

1

C∗
= inf

φ ∈ `2

φ 6= 0

(
∑

n∈ZN |φn|
2
)σ

(−∆dφ, φ)2
∑

n∈ZN |φn|2σ+2
.

This completes our summary of Weinstein’s results.
In our paper, to establish that problem (1.1)-(1.2) admits time periodic solu-

tions (1.4), we follow a variational approach (constrained minimization problem) as
used in [17]. However, one of our claims in Section 2, is that by using the discrete
interpolation inequality (1.10), a simple proof of an explicit lower bound on the
power of solutions (1.4) of the DNLS (1.1)-(1.2) under condition (D), can be de-
rived. It is shown that the lower bound exhibits an interesting relation between the
parameters N, σ,Ω, ε,Λn as well as on the excitation threshold for the periodic so-
lutions of the focusing DNLS (1.6) derived by Weinstein. A numerical comparison
with an Rthresh-independent lower bound, indicates for a derivation of an explicit
upper bound on Rthresh depending on σ, ε,N (Section 4).

Section 3 of our paper is devoted to the extension of the results on the existence
of breathers as well on the lower bounds of their power, for the DNLS (1.1), under
condition (SC). In this case, (1.1) cannot be considered as focusing or defocusing,
and the existence of a nontrivial breather solution (1.4) is proved via the Mountain
Pass Theorem (MPT) [8], as a saddle point of the functional

E [φ] =
ε

2
(−∆dφ, φ)2 −

Ω

2

∑

||n||≤K

|φn|
2 +

1

2σ + 2

∑

||n||≤K

Λn|φn|
2σ+2.

We remark on an important difference of the results of this manuscript com-
pared with those of [17]: the threshold Rthresh (which is used in Theorem 2.1, to
provide an optimal value for the constant C∗ of the inequality (1.10)) is a global
excitation threshold for the breathers, depending on σ,N , while the lower bounds
derived in this paper are “local” in the sense that they depend also on the frequency
Ω (as well as on Λn, ε, σ,N). These bounds should not be viewed as a prediction of
the excitation threshold in the case of σ ≥ 2/N nor as a theoretical prediction of the
numerical power of periodic solutions but as prediction of the smallest power a pe-
riodic solution for any Ω, Λn, ε,σ, N , satisfying the assumptions for the derivation
of the bounds. From this point of view, these bounds are “global” since no peri-
odic solution has power smaller than the derived estimates. The global character
of the estimates is revealed when one considers “limiting” cases of large values of
σ > 2/N : The numerical studies in Section 4, verify that for large values of frequen-
cies the estimates are not only satisfied but are also quite sharp estimates of the real
power of the corresponding periodic solutions. Thus the lower bounds derived are
of particular physical importance, since they provide a lower bound for the power
of each breather of prescribed frequency Ω, corresponding to DNLS lattices covered
by the form of (1.1).

In the case of constant or constant-sign anharmonic parameters, the conditions
on the existence of breather solutions with respect to the frequencies are similar to
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the requirement that they do not belong to the phonon band (see Remark 4.1). In
the case of the indefinite sign, non trivial breathers exist for any Ω > 0.

Although the study is limited to the finite dimensional lattice, this case is of
importance especially for numerical simulations: since the infinite lattice cannot be
modelled numerically, numerical investigations should consider finite lattices with
Dirichlet or periodic boundary conditions. The choice of boundary conditions only
matters, if the pulse is moving and collides with the boundary. We expect that
similar bounds can be derived for the case of periodic boundary conditions, by
considering appropriate variational problems, but the details have to be checked.
The numerical study performed in this paper, considers as examples, the standard
defocusing DNLS, the case of a single nonlinear impurity Λn = δn,0 and the case of
a random DNLS where Λn is described by a uniform distribution of +1 and −1.

We mention at this point, that an analytical and numerical study, on various
lower bounds of the power of time periodic solutions, of the DNLS equation with
saturable and power nonlinearities in infinite and finite lattices, is considered in [3].

2. A lower bound for time periodic solutions of the defocusing DNLS

in a finite lattice

In this section we discuss a lower bound for time periodic solutions of the
defocusing DNLS in a finite lattice and its relation to the excitation threshold of
the focusing DNLS.

Substitution of the solution (1.4) into (1.1)-(1.2) shows that φn satisfies the
system of algebraic equations

−ε(∆dφ)n − Ωφn = −Λn|φn|
2σφn, Ω > 0, ||n|| ≤ K,(2.1)

φn = 0, ||n|| > K.(2.2)

The finite dimensional problem (2.1)–(2.2) will be formulated in the finite dimen-
sional subspaces of the sequence spaces `p, 1 ≤ p ≤ ∞,

`p(ZN
K) = {φ ∈ `p : φn = 0 for ||n||| > K} .(2.3)

Clearly `p(ZN
K) ≡ C(2K+1)N

, endowed with the norm

||φ||p =





∑

||n||≤K

|φn|
p





1
p

.

Moreover, it is easy to check by using Hölder’s inequality that

||φ||p ≤ (2K + 1)
N(q−p)

qp ||φ||q ≤ ||φ||p, 1 ≤ p ≤ q <∞.(2.4)

The principal eigenvalue of the operator −∆d denoted by λ1 > 0, can be charac-
terized as

λ1 = inf
φ ∈ `2(ZN

K)
φ 6= 0

(−∆dφ, φ)2
∑

||n||≤K |φn|2
,(2.5)

Hence (2.5) implies the inequality

ελ1

∑

||n||≤K

|φn|
2 ≤ ε(−∆dφ, φ)2 ≤ 4εN

∑

||n||≤K

|φn|
2.(2.6)



74 J. CUEVAS, J. EILBECK, AND N. KARACHALIOS

Thus from (2.6), we find for λ1 the bound

λ1 ≤ 4N.(2.7)

In the case of an 1D-lattice n = 1, . . . ,K, the eigenvalues of the discrete Dirichlet
problem −∆dφ = λφ, with φ real, are given explicitly by

λn = 4 sin2

(

nπ

4(K + 1)

)

, n = 1, . . . ,K,

while for a N-dimensional problem, the eigenvalues are:

λ(n1,n2,...,nN ) = 4

[

sin2

(

n1π

4(K + 1)

)

+ sin2

(

n2π

4(K + 1)

)

+ . . .+ sin2

(

nNπ

4(K + 1)

)]

,

nj = 1, . . . ,K j = 1, . . . , N.

In consequence, the principal eigenvalue of the discrete Dirichlet problem −∆dφ =
λφ, with φ real, is given by

λ1 ≡ λ(1,1,...,1) = 4N sin2

(

π

4(K + 1)

)

.

We also mention that the inequality (1.10) holds for any element of the finite
dimensional space φ ∈ `2(ZN

K). The result of this note is stated in the following

Theorem 2.1. We consider the functional

H[φ] = ε(−∆dφ, φ)2 +
1

σ + 1

∑

||n||≤K

Λn|φn|
2σ+2,(2.8)

and the variational problem on `2(ZN
K)

inf







H[φ] :
∑

||n||≤K

|φn|
2 = R > 0







,(2.9)

Then there exists a minimizer φ̂ ∈ `2(ZN
K) for the variational problem (2.9) and

Ω = Ω(R) > 0, such that

Ω > ελ1,(2.10)

both satisfying the Euler-Lagrange equation (2.1), and
∑

||n||≤K |φ̂n|2 = R2.

Moreover, if σ ≥ 2
N

and

Ω > 4εN,(2.11)

the power of the minimizer P [φ̂] satisfies the lower bound

Rthresh ·

[

Ω − 4Nε

4εMN(σ + 1)

]
1
σ

≤ P [φ̂], M = max
||n||≤K

{Λn}(2.12)

where Rthresh ≡ Rthresh(σ,N, ε) is the excitation threshold of solutions (1.9) of the
focusing DNLS (1.6).

Proof: We consider the set

B =







φ ∈ `2(ZN
K) :

∑

||n||≤K

|φn|
2 = R2







.(2.13)
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Clearly H : B → R is a C1-functional (see [8, Lemma 2.3, pg. 121]). Also, it is
bounded from below: inequality (2.6), implies that

H[φ] ≥ ε(−∆dφ, φ)2 ≥ ελ1R
2.(2.14)

We are restricted to the finite dimensional space `2(ZN
K), and it follows that any

minimizing sequence associated with the variational problem (2.9) is precompact:
any minimizing sequence has a subsequence, converging to a minimizer. Thus E
attains its infimum at a point φ̂ in B. Now, for the C1-functional

LR[φ] =
∑

||n||≤K

|φn|
2 −R2,(2.15)

we get that for any φ ∈ B

〈L′
R[φ], φ〉 = 2

∑

||n||≤K

|φ|2 = 2R2 > 0.(2.16)

Thus the Regular Value Theorem ([2, Section 2.9], [7, Appendix A,pg. 556 ])
implies that the set R2 = L−1

R (0) is a C1-submanifold of `2(ZN
K). By applying the

Lagrange multiplier rule, we get the existence of a parameter Ω = Ω(R) ∈ R, such
that

〈

H′[φ̂] − ΩL′
R[φ̂], ψ

〉

= 2ε(−∆dφ̂, ψ)2 + 2
∑

||n||≤K

Λn|φ̂n|
2σφ̂nψn(2.17)

−2ΩRe
∑

||n||≤K

φ̂nψn = 0, for all ψ ∈ `2(ZN
K).

By 〈·, ·〉 we denote the duality bracket between `2(ZN
K) and its isomorphic dual

C
(2K+1)N

(hence this bracket actually coincides with the scalar product (·, ·)2).

Setting ψ = φ̂ in (2.17), we find that

2ε(−∆dφ̂, φ̂)2 + 2
∑

||n||≤K

Λn|φ̂|
2σ+2 = 2Ω

∑

||n||≤K

|φ̂n|
2.(2.18)

By using inequality (2.6) and (2.17) we get the inequality

2ελ1

∑

||n||≤K

|φ̂n|
2 ≤ 2ε(−∆dφ̂, φ̂)2 + 2

∑

||n||≤K

Λn|φ̂|
2σ+2

= 2Ω
∑

||n||≤K

|φ̂n|
2,(2.19)

implying that

Ω > ελ1,

that is, (2.10). Lastly, we shall use (1.10), with the optimal constant (1.11), to
estimate the second term on the rhs of (2.18): we have

2ε(−∆dφ̂, φ̂)2 + 2 max
||n||≤K

{Λn}C∗





∑

||n||≤K

|φ̂n|
2





σ

(−∆dφ̂, φ̂)2

≥ 2Ω
∑

||n||≤K

|φ̂n|
2.(2.20)
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Since from (2.6)
∑

||n||≤K

|φ̂n|
2 ≥

1

4N
(−∆dφ̂, φ̂)2,

inequality (2.20) becomes

2ε(−∆dφ̂, φ̂)2 + 2MC∗





∑

||n||≤K

|φ̂n|
2





σ

(−∆dφ̂, φ̂)2

≥
2Ω

4N
(−∆dφ̂, φ̂)2.(2.21)

Thus, from (2.21), we get

ε+MC∗R
2σ ≥

Ω

4N
.(2.22)

Now from (2.22) we may infer the the lower bound
[

Ω − 4Nε

4MNC∗

]
1
σ

< R2.(2.23)

Replacing the value C∗, given by (1.2), in inequality (2.23), we find

Rthresh ·

[

Ω − 4Nε

4εMN(σ + 1)

]
1
σ

≤ R2, M = max
||n||≤K

{Λn},

which is the lower bound (2.12). Note that (2.10) implies (2.20), due to (2.7). �

Remark 2.1. The lower bound (2.12) has the following implementation, through

Theorem 2.1. There exists a frequency Ω > ελ1 and a nontrivial minimizer φ̂ ∈
`2(ZN

K) of the problem (2.9), such that ψn(t) = e−iΩtφ̂n, is a solution of (1.1)-(1.2).
Furthermore if Ω satisfies (2.11), its power satisfies the lower bound (2.12).

A lower bound for the minimizer φ̂ without using the interpolation inequality
(1.10), can be derived directly by (2.18), by using (2.6) instead. We find from (2.18)
that

4εNR2 +MR2σ+2 ≥ ΩR2σ+2.(2.24)

From (2.24) we find the estimate
[

Ω − 4Nε

M

]
1
σ

≤ R2, σ > 0.(2.25)

It is our aim in Section 4, to examine by a numerical study if the lower bounds
(2.12) and (2.25) can serve as estimates for the threshold on the power of breather
solutions (1.4) of (1.1)-(1.2), as well as a comparison with respect to their possible
optimal behaviour.

3. Lower bounds for periodic solutions in the the case of sign-changing

anharmonic parameters.

We shall extend the results of the previous section to the case of (1.1)-(1.2) with
sign-changing anharmonic parameter. Under condition (SG), the DNLS equation
(1.1) cannot be considered as focusing or defocusing. The method based on the
Mountain Pass Theorem (MPT) [2, Theorem 6.1, pg. 140] will be used also here
(see [8]), to establish that there exist nontrivial breathers (1.4).



A LOWER BOUND FOR THE POWER OF PERIODIC SOLUTIONS 77

Theorem 3.1. We consider the DNLS equation (1.1) assuming that (SG) is
satisfied. For Ω > 0 given, there exists nontrivial φ ∈ `2(ZN

K) such that ψn(t) =
e−iΩtφn, is a solution of the DNLS equation (1.1). Moreover the power of the
nontrivial periodic solution satisfies the lower bounds

[

ελ1 − Ω

−minn∈S−
{Λn}

]
1
σ

< R2, 0 < Ω < ελ1 σ > 0,(3.1)

[

Ω − 4Nε

maxn∈S+{Λn}

]
1
σ

< R2, Ω > 4εN, σ > 0.(3.2)

Proof: As in [8], we shall seek for non-trivial breathers as critical points of
C1-functional E : `2 → R defined as

E(φ) =
ε

2
(−∆dφ, φ)2 −

Ω

2

∑

||n||≤K

|φn|
2 +

1

2σ + 2

∑

||n||≤K

Λn|φn|
2σ+2.(3.3)

By the differentiability of E , it can be easily checked that any critical point of E is
a solution of

(3.4) (−∆dφ, ψ)2 − Ω(φ, ψ)2 = (−Λ|φ|2σφ, ψ)2, for all ψ ∈ `2, Λ = (Λn)||n||≤K ,

which in turns, is equivalently, a solution of (1.1).
Clearly E [0] = 0. Next, we shall verify the existence of z ∈ `2(ZN

K), such that
||z||22 = θ2 > 0 satisfying E [z] > 0, which is the first assumption of MPT. We
consider

(3.5) {zn}n∈Z
N
K

= {zn}n∈S+ + {zn}n∈S−
, such that

{

{zn}n∈S+ > 0,
{zn}n∈S−

= 0.

We observe that

E [z] =
ε

2
(−∆dz, z)2 −

Ω

2

∑

n∈S+

|zn|
2 +

1

2σ + 2

∑

n∈S+

Λn|zn|
2σ+2

≥
ε

2
(−∆dz, z)2 −

Ω

2

∑

n∈S+

|zn|
2 +

minn∈S+{Λn}

2σ + 2

∑

n∈S+

|zn|
2σ+2

≥ −
Ω

2

∑

n∈S+

|zn|
2 +

minn∈S+{Λn}

2σ + 2

∑

n∈S+

|zn|
2σ+2.(3.6)

Applying (2.4) for q = 2σ + 2 and p = 2, we get that

||φ||2σ+2
2σ+2 ≥

1

(2K + 1)Nσ
||φ||2σ+2

2 .(3.7)

Combining (3.6) with (3.7) we get that

E [z] ≥ −
Ω

2

∑

n∈S+

|zn|
2 +

minn∈S+{Λn}

(2σ + 2)(2K + 1)Nσ





∑

n∈S+

|zn|
2





σ+1

.(3.8)

Then from (3.8), it follows that the requirement E [z] > 0 holds if z satisfies (3.5)
and

θ2 >

[

Ω(2σ + 2)(2K + 1)Nσ

2 minn∈S+{Λn}

]

1
σ

.
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Now consider some χ ∈ `2(ZN
K) with ||χ||2 = 1 such that

{χn}n∈Z
N
K

= {χn}n∈S+ + {χn}n∈S−
, where

{

{χn}n∈S+ = 0,
{χn}n∈S−

> 0.

Setting ζ = tχ ∈ `2(ZN
K), for some t > 0, we observe that

E[ζ] =
t2

2
ε(−∆dζ, ζ)2 −

Ωt2

2
+

t2σ+2

2σ + 2

∑

n∈S−

Λn|zn|
2σ+2.(3.9)

Letting now t→ +∞ we get from condition (P ), that E [tχ] → −∞. Thus choosing
χ as in (3.9) and t sufficiently large, we derive the existence of some z1 ∈ `2(ZN

K)
such that E [z1] < ρ. Furthermore, since we are restricted in the finite lattice (ZN

K ),
the functional E satisfies Palais-Smale condition [2, Definition 4.1, pg. 130]. Hence,
the conditions of MPT are satisfied, justifying the existence of nontrivial breather
solution (1.4).

Since the nontrivial critical point φ of the functional E is a solution of (3.4) we
may set ψ = φ in (3.4), to get that

ε(−∆dφ, φ)2 − Ω
∑

||n||≤K

|φn|
2 +

∑

||n||≤K

Λn|φn|
2σ+2 = 0.(3.10)

From (3.10) we get the inequality
∑

n∈S+

Λn|φn|
2σ+2 +

∑

n∈S−

Λn|φn|
2σ+2 = Ω

∑

||n||≤K

|φn|
2 − ε(−∆dφ, φ)2

≥ (Ω − 4εN)
∑

||n||≤K

|φn|
2.(3.11)

Assuming that Ω > 4εN we get from (3.11) that
∑

n∈S+

Λn|φn|
2σ+2 >

∑

n∈S−

{−Λn}|φn|
2σ+2, {−Λn}n∈S−

≥ 0.(3.12)

Thus in the case where Ω > 4εN , the “defocusing part” of the nonlinearity “domi-
nates” in the sense of (3.12). In this case and since

∑

n∈S−

{−Λn}|φn|2σ+2 ≤ 0, we

deduce that

(Ω − 4εN)
∑

||n||≤K

|φn|
2 ≤

∑

n∈S+

Λn|φn|
2σ+2 +

∑

n∈S−

Λn|φn|
2σ+2

<
∑

n∈S+

Λn|φn|
2σ+2

< max
n∈S+

{Λn}
∑

n∈S+

|φn|
2σ+2

< max
n∈S+

{Λn}
∑

||n||≤K

|φn|
2σ+2.(3.13)

Using (2.4) and (3.13), we find the lower bound

[

Ω − 4Nε

maxn∈S+{Λn}

]
1
σ

< R2.
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On the other hand, when the “focusing part” dominates in the sense of
∑

n∈S+

Λn|φn|
2σ+2 <

∑

n∈S−

{−Λn}|φn|
2σ+2,(3.14)

we get from (3.11) that
(

Ω

4N
− ε

)

(−∆dφ, φ)2 ≤ Ω
∑

||n||≤K

|φn|
2 − ε(−∆dφ, φ)2 < 0,(3.15)

due to (2.6). Thus (3.14) holds when the frequency of the breather solution satisfies

Ω < 4εN.(3.16)

By using (2.6), we get from (3.11) and (3.15) that

(ελ1 − Ω)
∑

||n||≤K

|φn|
2 ≤ ε(−∆dφ, φ)2 − Ω

∑

||n||≤K

|φn|
2

= −
∑

n∈S+

Λn|φn|
2σ+2 −

∑

n∈S−

Λn|φn|
2σ+2

≤
∑

n∈S−

{−Λn}|φn|
2σ+2

≤ − min
n∈S−

{Λn}
∑

||n||≤K

|φn|
2σ+2.(3.17)

Condition (3.16), implies that Ω < ελ1. In this case, we may infer from (3.17) the
lower bound

[

ελ1 − Ω

−minn∈S−
{Λn}

]
1
σ

< R2.

Finally, when
∑

n∈S+

Λn|φn|
2σ+2 =

∑

n∈S−

{−Λn}|φn|
2σ+2,(3.18)

i.e.
∑

||n||∈S+
Λn|φn|2σ+2 = 0, then from (3.11) we get that

−∆dφn = Ωφn, ||n|| ≤ K,

φn = 0, ||n|| > K.

Thus when (3.18), it follows that Ω is an eigenvalue of the Discrete Laplacian, and
φ behaves as a corresponding eigensolution of the discrete eigenvalue problem. �

Remark 3.1. Working exactly as in the proof of the estimate (2.12) we may
replace the estimate (3.2) of the case Ω > 4εN , by

Rthresh ·

[

Ω − 4Nε

4εM1N(σ + 1)

]
1
σ

≤ R2, M1 = max
||n||≤K

|Λn|(3.19)

which is the extension of the estimate (2.12) in the case of sign-changing anharmonic
parameters.
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Remark 3.2. Setting Ω = 0 in (3.6), (3.8) as well as in (3.9), it can be easily
checked that Theorem 3.1 can be used for the proof of existence of nontrivial steady
state solutions of (1.1)-(1.2) under condition (SC) for the anharmonic parameter,
i.e. solutions of the problem

−ε(∆dφ)n = −Λn|φn|
2σφn, Ω > 0, ||n|| ≤ K,(3.20)

φn = 0, ||n|| > K.(3.21)

The result of Theorem 3.1 if combined with [8, Theorem 2.6, pg.125] establishes the
existence of periodic solutions (1.4) for any Ω ∈ R. Moreover, it is straightforward
to check that inequality (3.17) is valid for Ω < 0. Thus the lower bound (3.1) for
the power of periodic solutions (1.4) is valid for any in Ω ∈ (−∞, ελ1), that is

[

ελ1 − Ω

−minn∈S−
{Λn}

]
1
σ

< R2, Ω ∈ (−∞, ελ1), σ > 0.(3.22)

4. Numerical studies of the lower bounds.

We perform a numerical study to test the lower bounds derived in the previous
sections. This numerical study consists in checking that the power of a numerically
calculated breather is higher than the theoretical thresholds estimates. To this end,
we consider single site breathers (i.e. localized solutions with only one excited site
at the anti-continuous limit, ε = 0), which are the lowest power solutions.

Figures 1-4 refers to the cases (σ = 2, N = 1, ε = 0.25), (σ = 1, N = 2, ε =
0.15), (σ = 10, N = 1, ε = 0.25) and (σ = 2, N = 2, ε = 0.15), respectively. All
the cases consider the value σ ≥ 2

N
of Theorem 1.1, where the excitation threshold

appears.
Figure 1 shows the power of a family of single site breathers together with

the corresponding threshold estimates (2.12), (2.25), for a homogeneous lattice
(Λn = 1 ∀n). The inset in each picture is a numerical verification of Theorem 1.1,
demonstrating the region where the numerical power of periodic solutions (1.9) of
the focusing DNLS (1.6) for the same values of σ, N, ε, reaches the minimum value
Rthresh. These numerical values have been inserted in the estimate (2.12). The
numerical study shows that the numerical power of periodic solutions (1.4) of the
defocusing DNLS (1.1)-(1.2), fulfills the estimates. It can also be remarked, that
the numerical studies indicate that

lower bound (2.12) < lower bound (2.25).(4.1)

From this numerical observation and the appearance of Rthresh in (2.12), we may
guess an explicit upper bound for Rthresh,

Rthresh < [4εN(σ + 1)]
1
σ , σ ≥

2

N
.(4.2)

Testing the estimate with the values for the parameters in figure 1, we get for
(a) Rthresh < 1.732, for (b) Rthresh < 2.4, for (c) Rthresh < 1.270 and for (c)
Rthresh < 1.897. In all cases the numerical calculated Rthresh satisfies the above
estimates. We remark that in the vicinity of Ω = 1, the numerical power tends to
infinity when N = 1 and σ > 2 and to a finite value for the cases N = 1, σ = 2
and N = 2, σ ≥ 1. Explanations for this behavior are not straightforward, we refer
to [12] for a detailed discussion.

Figure 2, demonstrates the results of the numerical study for the DNLS (1.1)-
(1.2) for the case of a single nonlinear impurity Λn = δn,0. For the estimate (2.12)
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Figure 1. Numerical power for solutions (1.4), of the defocusing
DNLS (1.1)-(1.2), with constant anharmonic parameter Λn = 1.
(a) σ = 2, N = 1 (σ = 2

N
), (b) σ = 1, N = 2 (σ = 2

N
), (c) σ = 10,

N = 1 (σ > 2
N

), (d) σ = 2, N = 2 (σ > 2
N

). The inset in each case,
shows a magnification of the region where the power of periodic
solutions (1.9) of the focusing DNLS (1.6), reaches its minimum
value. In case (a), Rthresh = 1.009, in case (b), Rthresh = 0.855,
in case (c), Rthresh = 1.098 and in case (d), Rthresh = 1.047. Full
line corresponds to the numerical calculated single site breathers,
dashed line to the estimate (2.12) and dotted line to the estimate
(2.25).

the values of Rthresh of figure 1 have been used. As it is shown, both theoretical
estimates can serve as satisfactory predictions of a lower bound for the numerical
power of the breathers. In comparison with the case of constant anharmonic pa-
rameter, the accuracy of both estimates is increased. In this case also (4.1) is also
satisfied. Figure 3 present the results of a numerical study for a DNLS lattice with
sign-changing anharmonic parameter. We choose as an example, a random DNLS
lattice (1.1)-(1.2). The random site dependent anharmonic parameter Λn is given by
a random uniform distribution of +1 and −1. The figure shows the numerical power
of breathers against the estimates (3.2) and (3.19) (hereM1 = max||n||≤K |Λn| = 1),
for the random DNLS lattice. Both figures justify that both theoretical estimates,
are fulfilled as a lower bounds for the power of breathers with frequency Ω > 4εN ,
also in the case of the random DNLS lattice.
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Figure 2. Numerical power for single site breathers centered at
the nonlinear impurity site (1.4), of the defocusing DNLS (1.1)-
(1.2) with a nonlinear impurity Λn = δn,0.

The results of the numerical study checking the estimate (3.1) and especially
(3.22) for the random DNLS lattice, are presented in figure 4. For Ω < 0 as well as
for the case 0 ≤ Ω < ελ1, it follows that the lower bound (3.22) gives satisfactory
quantitative predictions for lower bounds on the real power of the breathers of
the random DNLS lattice. Notice that the Ω is always below 0 because single
site breathers in random lattices always bifurcate with another breather solution
for Ω < 0 (see Refs. [20] and [21]). We also refer to [19], on the application
of numerical methods, for calculating power thresholds of localized excitations in
DNLS lattices.

Remark 4.1. The results of [17] prove the existence of an excitation threshold,
which appears for the case σ ≥ 2/N , as well the existence of a frequency ω∗ > 0
on which this threshold value on the power is achieved. The corresponding solution
ψn(t) = eiω∗tφn is a ground state having power Pthresh-the excitation threshold
value. However, the thresholds we have calculated in the paper are “local” ones,
i.e. they are value above which the power of each breather with given Λn, ε, σ, and
Ω must be. On the other hand, noting that the numerical power approaches in a
quite sharp manner the theoretical estimates, for “limiting” large values of of the
nonlinearity exponent σ > 2/N (as it is observed in the case σ = 10) and large
frequencies, can be considered also as “global” in the sense that they predict the
smallest value a breather can have for any Ω, σ,N satisfying the assumptions for
the derivation of the estimates. We remark that similar “global” bounds have been
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Figure 3. Numerical power for solutions (1.4) for the random
DNLS lattice (1.1)-(1.2) against the theoretical estimates (3.2) and
(3.19). The numerical solutions are single site breathers centered
at n = 0, for which Λn = +1.

shown in [3] for the case σ < 2/N which is the case of nonexistence of the excitation
threshold of [17], as well as for the saturable nonlinearity.

Finally, we note that the phonon band of the defocusing DNLS equation extends
to the interval [0, 4Nε]. Then breathers frequencies must lie in the intervals Ω >
4Nε, or Ω < 0. It is the former case which we consider in this paper (except in
Figure 4, where the latter is considered).
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