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Discrete soliton collisions in a waveguide array with saturable nonlinearity
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Abstract

We study the symmetric collisions of two mobile breathers/solitons in a model for coupled wave guides with a saturable nonlinearity. The
saturability allows the existence of mobile breathers with high power. Three main regimes are observed: breather fusion, breather reflection and
breather creation. The last regime seems to be exclusive of systems with a saturable nonlinearity, and has been previously observed in continuous
models. In some cases a “symmetry breaking” can be observed, which we show to be an numerical artifact.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since the 1960s, a great number of papers have consid-
ered the properties of solitons in nonlinear optic media with a
Kerr-type (cubic) nonlinearity. This media can be modelled by
the cubic nonlinear Schrödinger (NLS) equation. As it is well
known, the NLS equation is integrable and, in consequence,
solitons interact elastically [1].

More recently, several authors have studied the properties of
solitons in photo-refractive media [2]. In this case, the equation
describing these media is a modification of the original NLS,
which consists in substituting the Kerr nonlinearity term by an-
other one of saturable type. This saturable (SNLS) equation
is nonintegrable and the soliton collision processes are inelas-
tic, leading to annihilation, fusion or creation of solitons [3].
This last phenomena consists of the appearance of three soli-
tons after the collision of only two of them. Another important
feature of the SNLS is that the behaviour of the solutions is
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quite generic, being independent of the details of the mathe-
matical model.

The discrete version of the NLS equation can be used to
describe nonlinear waveguide arrays within the tight binding
approximation [4]. The existence and properties of mobile dis-
crete breathers/solitons in DNLS lattices has been considered
in a number of studies. (We use the terms breathers and solitons
interchangeably in this context, also intrinsic localized modes.)
An early brief study [5] showed that breathers could propagate
along the lattice with a small loss of energy, and could become
trapped by inhomogeneities in the lattice. Later, a more detailed
study [6] suggested that “exact” travelling breathers might ex-
ist, at least for some parameter ranges. The reviews [7,8] refer to
many other papers in this area. More recently, work has concen-
trated on breathers with infinite oscillating tails [9], although
the question of the existence of exact breather solutions which
tend to zero as n → ±∞ has not yet been resolved. Given the
long history of mobile breather solutions of this equation, it is
rather surprising that a systematic study of the collision of two
breathers in the DNLS model has only recently been carried
out [10]. (We mention also that collisions have been studied in
generalised nearly integrable DNLS model in [11,12].)

Recently, some studies have considered the existence of
mobile breathers in waveguide arrays in photo-refractive crys-
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tal, described by a DNLS equation with saturable nonlinearity
[13,14]. In particular, these papers considered a discrete version
of the Vinetskii–Kukhtarev model [2,15]. This model system,
which we consider in this Letter, is governed by the following
equation of motion

(1)iu̇n − β
un

1 + |un|2 + (un+1 − 2un + un−1) = 0.

The key difference between the cubic DNLS equation and
the saturable DNLS equation is that in the later, the Peierls–
Nabarro barrier (the energy difference between a bond-centred
and a site-centred breather with the same power) is bounded
and, in most cases, smaller than in the former [16]. It allows the
existence of mobile breathers of high power.

It is worth noting that there is another saturable DNLS equa-
tion in the literature, namely

(2)iψ̇n + ν|ψn|2
1 + μ|ψn|2 ψn + (ψn+1 − 2ψn + ψn−1) = 0.

For example, Khare et al. [17] have recently published an exact
stationary breather solution for (2), although in fact the station-
ary solution of this equation is just the solution to an integrable
map first published by McMillan in 1971 [18]. Maluckov et al.
[19] have also recently studied stationary solutions of (2). How-
ever, the two models are not independent, solutions of (2) can
be mapped into solutions of (1) by the (invertible) transforma-
tion

ψn(t) = 1√
μ

exp

{
iνt

μ

}
un(t), β = ν

μ
.

The aim of the present Letter is to study breather–breather
collisions in the saturable DNLS equation (1) and to compare
the results with those obtained in the continuous SNLS and the
discrete cubic equation.

2. Numerical results

This model (1) has two conserved quantities: the Hamil-
tonian H = ∑

n[β log(1+|un|2)+|un−1 −un|2] and the power
(or norm) P = ∑

n |un|2.
In order to reduce the dimension of the large parameter space

to be considered, we have fixed β to β = 2. Higher values of β

lead to solutions that only can be moved for a restricted set of
power values [13]. Note that the localized stationary breather
solution of [17] only exists for β > 2, and hence are not rele-
vant to our discussions which focus on the β = 2 case. It would
be interesting to extend the calculations in this Letter to other
values of β to see if the presence of these stationary solutions
affected the results given here.

A moving breather vn(t) is obtained by adding a thrust q to
a stationary breather un, so that:

(3)vn(0) = un exp(iqn).

Notice that this procedure of obtaining moving breathers is sim-
ilar to the marginal mode method introduced in [20,21] for
Klein–Gordon lattices.
(a)

(b)

(c)

Fig. 1. Typical power density plots for (a) bound state formation (P = 10,
q = 0.1), (b) reflection (P = 10, q = 0.2), and (c) breather creation (P = 70,
q = 0.5). In all cases, OS collisions are considered, although these pictures do
not vary considerably for IS collisions.

In the following, we consider the collision of two identical
breathers moving in opposite directions with the same thrust q .
Analogously to Ref. [10], we consider both inter-site (IS) and
on-site (OS) collisions.

The collision scenario we observe for small P is quite sim-
ple: there exists a critical value qc below which breathers form
a bound state, and above which, breathers are reflected (see
Fig. 1(a), (b) for examples, of these two cases). It can be ob-
served that the bound state “oscillates” after the collision. The
amplitude of these oscillations decreases when approaching to
the critical point, whereas their “period” increases. (Note that
the “reflection” case could equally be regarded as a transmis-
sion case as the two breathers are indistinguishable. In the case
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(a) (b)

Fig. 2. Different regimes observed in (a) IS and (b) OS collisions. The colours represent the following: white-merge to a single breather; black-reflection; and
red-breather creation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

(a) (b)

Fig. 3. Critical value of the initial thrust q for (a) IS and (b) OS collisions versus P .
of reflection/transmission, there is some loss of energy of the
two breathers.)

For high values of P , the above scenario takes place, ex-
cept that, for high values of q , breather creation is observed.
Fig. 1(c) shows an example of such a collision. This behaviour
is similar to the soliton creation observed in the saturable con-
tinuous models and will be analyzed in more detail below. The
different regimes in the (P, q) plane are depicted in Fig. 2, for
both IS and OS collisions. Furthermore, Fig. 3 shows the val-
ues of the critical value of q separating merging and reflecting
regimes, as a function of the power P . It can be seen that, for
most choices of P , both values are close. This is different from
the cubic DNLS case [10] where the critical values of the OS
case is an order of magnitude higher than the ones for the IS
case. The likely explanation is that in the saturable case, the PN
barrier is small (for our choice β = 2, the absolute value of the
barrier is smaller than 0.01).

For high values of P , we have also observed the merging of
two breathers with symmetry breaking, as reported in [10]. This
symmetry breaking manifests as a movement of the final bound
state to left or to the right accompanied by the appearance
of a total lattice momentum, defined by p = i

∑
n(ψn+1ψ

∗
n −

ψ∗
n+1ψn). Since the equation, the initial conditions, and the

boundary conditions are symmetric, this state must be a nu-
merical artifact, as suggested in [10]. To test this hypothesis
further, we performed some runs with either (a) increased nu-
merical accuracy in the numerical integration routines, or (b),
the addition of some very small random noise to the initial con-
ditions. In case (a), the onset of symmetry breaking is shifted
to longer times, whereas in case (b), symmetry breaking is ob-
served at shorter times. These numerical results confirm that
symmetry breaking is a numerical artifact caused by random
rounding errors breaking the symmetry of the problem. How-
ever these “spurious” results are interesting in their own right
as they suggest that at these higher values of P , the stationary
breather formed after collision is more easily set into motion by
a very small perturbation. To check that the other phenomena
we observe is not due to numerical artifacts, we have carried
out similar tests on other runs showing different phenomena.
No such sensitivity to random errors of the accuracy of the in-
tegrators is observed.

3. Breather creation

We proceed to analyze the breather creation process, as it
is most noteworthy phenomenon that appears in the saturable
case in comparison to the cubic one. From Figs. 2 and 4 we can
conclude that the conditions for breather creation are that P and
q are above a threshold value.

This result can be explained with the aid of Fig. 5, where
the density power of the collision point, for the cases of re-
flection and breather creation, is shown. It can be seen that the
power density oscillates after the collision, and its minimum
is zero for the case of no creation. The minimum power den-
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Fig. 4. Minimum value of the power density at the collision point after collision as a function of P and q . Left (right) panel corresponds to inter-(on-) site collisions.
We have supposed that the power trapped in the reflection regime is zero in order to clarify the figure.

Fig. 5. Time evolution of the power density at the collision point (|u0|2). The left panel corresponds to a reflection case (q = 0.3, P = 70) and the right panel to a
creation case (q = 0.7, P = 70).

Fig. 6. Representation of the “breather width” W (defined as W = |u1|2/|u0|2) versus the power of a stationary site-centred (left) and a bond-centred (right) breather.
sity after the collision for all the simulations (neglecting the
trapping regime) is represented in Fig. 4. In consequence, the
trapped power must be above a threshold so that breather cre-
ation occurs. It can be explained by the fact that, for a stationary
breather to have a “saturable” behaviour, its power should be
higher than a threshold value. This phenomenon is similar to
the soliton bistability observed for SNLS solitons in [22]. It
consists of the existence of a minimum in the dependence of
the soliton width with respect to the peak intensity. This depen-
dence is monotonically decreasing in the cubic NLS, and thus
the soliton in a saturable medium has a Kerr behaviour for small
peak intensities (or power). In the discrete case, as the width is
less well-defined, we have considered instead W = |u1|2/|u0|2,
where n = 0 is chosen as the centre (or peak) of the breather.
Fig. 6 shows W versus P displaying a similar behaviour as in
the continuous case.

The analysis given above also explain why the results of [10]
(i.e. only merge and reflection regimes take place) are found
for small values of the power. We note also that this creation
process may be related to the phenomena of the fission of a cou-
pled two-breather state into a stationary and a moving breather
in the DNLS equation [21].

4. Effect of phase in breather collisions

To complete the Letter, we give a brief study of the effect of
considering a phase difference between the breathers, in a simi-
lar fashion to Ref. [11]. This is achieved by introducing a factor
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(a) (b)

Fig. 7. Final velocities (a) and amplitudes (b) with respect to the phase for breathers with P = 20 and q = 0.25 and an OS collision.

(a) (b)

Fig. 8. Relation between the final velocities for breathers with q = 0.25 and (a) P = 20; (b) P = 10. OS collisions are considered in both cases.
exp(iφ) in one of the breathers. Fig. 7 shows the final ampli-
tudes A1,2 and velocities V1,2 of both breathers as a function
of φ.

It appears that the final velocities are smooth functions of φ,
showing a strong phase effect, with the V2 curve following
the V1 curve, phase-shifted by π . The V values vary from
around 0.2 to 0.8. The amplitude dependence, on the other
hand, is much smaller but shows a much more irregular behav-
iour as a function of φ. Clearly the discreteness of the lattice is
featuring strongly here in this latter case.

Finally, in Fig. 8, we show the relation between the outgoing
velocities as φ varies through 2π , analogously to Fig. 3 of [11].
Here the relatively smooth behaviour over a large range of V

values is clearly shown.

5. Conclusions

We have analyzed the collisional behaviour in a saturable
DNLS model, finding close analogies to the continuous NLS
equation. Breathers can merge, reflect or be created (although
breather annihilation is not observed). The extra power avail-
able to breathers in the SDNLS case results in the new phenom-
ena of breather creation in a discrete model. Additionally, the
scenario in the saturable DNLS case seems to be much “clean-
er” than in the cubic DNLS case on a coarse scale, with a strong
but simpler threshold effect. These facts may be an advantage in
some applications, such as multi-port optical switching. There
are still a number of details in the fine-scale structure which are
as yet unexplained. These may perhaps be understood through
the application of a future variational study. It would also be in-
teresting to extend this study to consider the collision of two
non-identical breathers.
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