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Very recently Williset al. fPhys. Rev. E69, 056612s2004dg have used a collective variable theory to explain
the appearance of a nonzero energy current in an ac-driven, damped sine-Gordon equation. In this Comment,
we prove rigorously that the time-averaged energy current in an ac-driven nonlinear Klein-Gordon system is
strictly zero.
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Recently several papers have been published trying to un-
derstand soliton ratchetsssee, for example, Refs.f1–6g and
for a recent review, Chap. 9 in Ref.f7g, pp. 343–364d. This
phenomenon is a generalization of the ratchet effectf8g to
spatially extended systems, and manifests as a unidirectional
motion of a soliton induced by zero-average forces. A para-
digmatic example is the driven, damped nonlinear Klein-
Gordon equation

f,ttsx,td − f,xxsx,td = − U8ffsx,tdg + fstd − bf,tsx,td, s1d

whereg,z=]g/]z, fstd is a periodic field with periodT and
zero time averagefi.e., 1 /Te0

Tdtfstd=0g, b.0 is the dissipa-
tion parameter determining the inverse relaxation time in the
system, andU8szd is the derivative with respect toz of the
potential Uszd. In this Comment, we will assume that the
potentialUszd is periodic with periodl, and presents minima
at zj =z0+ jl, with j PZ. The ac-driven, damped sine-Gordon
equation considered in Ref.f6g is a particular case of this
more general problem, withUszd=1−cosszd and

fstd = − fe1cossvtd + e2coss2vt + udg. s2d

To fully specify the mathematical problem, the partial differ-
ential equations1d must be amended by both initial condi-
tions for fsx,0d and f,tsx,0d, and boundary conditions for
limx→±`fsx,td. Several boundary conditions can be imposed
to have a well-posed boundary value problem. For instance,
in the absence of the periodic fieldfstd, it is possible to
choose the fixed boundary conditions: limx→+`fsx,td=zl and
limx→−`fsx,td=zm. In the presence offstd, the fixed bound-
ary conditions become incompatible with Eq.s1d, and they
are usually replaced by the aperiodic boundary conditions:

lim
x→+`

fsx,td = lim
x→−`

fsx,td + lQ, s3d

lim
x→+`

f,xsx,td = lim
x→−`

f,xsx,td, s4d

whereQPZ is the so-called topological charge. The discrete
version of these aperiodic boundary conditions are also the
most used in the numerical solution of Eq.s1d ssee, for ex-
ample, Refs.f1,5gd.

It can be derived from the continuity equation that the
energy current density generated by the fieldfsx,td in the
absence of damping and external forcing is given byjsx,td
=−f,tsx,tdf,xsx,td and, consequently, the energy current
reads

Jstd = −E
−`

+`

dxf,xsx,tdf,tsx,td. s5d

The time-averaged energy currentkJl is defined as the limit

kJl = lim
t→+`

1

t
E

0

t

dtJstd. s6d

In Ref. f1g, it has been proved by symmetry considerations
that anecessarycondition for the appearance of a nonvan-
ishing time-averaged energy current is that either the poten-
tial presents broken spatial symmetry, or the fieldfstd vio-
lates the symmetry property

fSt +
T

2
D = − fstd, s7d

or both simultaneously. Following this idea, a collective vari-
able approach has been developed in Ref.f6g for the ac-
driven, damped sine-Gordon equation with a field of the
form s2d that leads to a nonvanishing time-averaged energy
current. The purpose of this Comment is to prove that the
time-averaged energy current,kJl, of a driven, damped non-
linear Klein-Gordon equation of the forms1d is necessarily
zero.

To prove thatkJl=0, firstly we will obtain an ordinary
differential equation for the energy currentJstd. In order to*Electronic address: niurka@euler.us.es
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do that, we differentiate with respect to time Eq.s5d, result-
ing

J̇std = −E
−`

+`

dxff,xtsx,tdf,tsx,td + f,xsx,tdf,ttsx,tdg. s8d

By making use of Eq.s1d in the second term on the right-
hand side of the above expression, it is straightforward to
write it in the form

J̇std = −
1

2h lim
x→+`

ff,tsx,tdg2 − lim
x→−`

ff,tsx,tdg2j
−

1

2h lim
x→+`

ff,xsx,tdg2 − lim
x→−`

ff,xsx,tdg2j
+ lim

x→+`
Uffsx,tdg − lim

x→−`
Uffsx,tdg − bJstd

− f lim
x→+`

fsx,td − lim
x→−`

fsx,tdg fstd. s9d

Differentiating Eq.s3d with respect tot, it is easy to see that
the first term between the brace brackets on the right-hand
side of Eq.s9d is equal to zero. From Eq.s4d, it follows that
the second term between the brace brackets on the right-hand
side of Eq.s9d is also equal to zero. The two terms of Eq.s9d
containing Uffsx,tdg also cancel each other due to the
boundary conditions3d and the periodicity ofUszd. Thus,
from Eq. s3d we finally obtain

J̇std = − bJstd − lQfstd. s10d

Notice that Eq.s10d is a direct consequence of Eq.s1d and
the boundary conditionss3d ands4d. Therefore, it is anexact
result valid for any periodic potentialUszd of the type de-
scribed in the paragraph below Eq.s1d, and any external field
fstd. Equations10d appears in Ref.f6g as anapproximate
result obtained after neglecting the dressing due to phonons.

The general solution of Eq.s10d is

Jstd = Js0de−bt − lQE
0

t

dt8e−bst−t8dfst8d, s11d

and making use of the definition of the time-averaged energy
current in Eq.s6d, it results

kJl = lim
t→+`

H Js0d
bt

s1 − e−btd −
lQ

bt
E

0

t

dt fstd

+
lQ

bt
E

0

t

dt fstde−bst−tdJ . s12d

The first limit in the above expression is obviously equal to
zero. The second one is also equal to zero as the external
field is periodic with zero time average. The last integral
appearing in Eq.s12d can be bounded using the fact that

UE
0

t

dt fstde−bst−tdU ø E
0

t

dtufstdue−bst−td ø
fm

b
s1 − e−btd,

s13d

wherefm is an upper bound ofufstdu and, thus, the third limit
in Eq. s12d is also equal to zero. We conclude thatkJl=0 for
any periodic potentialUszd of the type described in the para-
graph below Eq.s1d, and any bounded, zero time-averaged
periodic field fstd.

It is important to emphasize that the result in this Com-
ment is not applicable when the external field not only de-
pends ont but also onx. In that case Eq.s10d cannot be
obtained and, in principle, it is possible to observe a nonva-
nishing time-averaged energy current. A field of this kind has
been considered in Ref.f1g, wherefsx,td=Estd+jsx,td, with
Estd being an ac field with zero mean andjsx,td a Gaussian
white noise.
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