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Abstract

A quantum breather on a translationally invariant one-dimensional anharmonic lattice is an extended Bloch state with two or
more particles in a strongly coteted state. In this Letter we study a periodittice containingposons described by the quantum
discrete nonlinear Schrodinger equation (QDNLS), a quantum version of the discrete nonlinear Schrédinger equation, also
known as the boson Hubbard model. We disces®eal effects that break the latticensnetry and lead to spal localization
of the breather.
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1. Introduction breathers are less numerous, [&,3] for some the-
oretical results ang4] for some experimental work.

The localization of energy by nonlinearity in clas- Studies of quantum modes on small lattices may be
sical lattices has been much studied recently. Cor- relevantto studies of quantum dots and quantum com-
responding localized states, called intrinsic localized Puting (cf.[5]), and for studies of Bose—Einstein con-
modes or discrete breathers, have been the subject ofdensates in periodic optical traf.
intense theoretical and experimental investigafidn In this Letter, we present some results related
Results on the quantum equivalent of discrete classical to quantum lattice problems, in particular in one-

dimensional lattices with a small number of quanta.
- We study a periodic lattice witty sites containing
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oscillators, which has been used to describe the dy-
namics of a great variety of systeff§. The QDNLS
Hamiltonian is given by

f

. 1

A=-Y :Eyjhjb}bjb, +eibl(bj1+bjp1). (1)
j=1

whereb andb; are standard bosonic operators/e ;

is the ratio of anharmonicity to nearest neighbor hop-
ping energy, and the chain is subject to periodic bound-
ary conditions with period . Initially we consider the
case where the chain is translationally invariant, i.e.,
yj =y ande; = € are independent of. In general we
takee = 1.

The Hamiltonian(1) has an important conserved
quantity, the numbeN = Z-’;l bT.b,-, which enables
the total Hamiltonian to be block-diagonalised and
greatly simplifies the analysis. In this Letter we restrict
ourselves to a study of small lattices and a small num-
ber of quanta where numerically exact solutions can
be found. Initially we focus on the simplest nontrivial
case N = 2, where bound states corresponds to bound
two-vibron states, as observed experimentally in sev-
eral system$8]. We then extend these results to more
complicated situations wittv = 3 andN = 4, noting
that many of these results are valid for larger values
of N.

2. Quantum breathersin atrandational invariant
lattice

In QDNLS case, we use a number state basis,
[Ym) = [n1,n2,...,n¢l, wheren; represents the num-
ber of quanta at sité (N = Y _n;). A general wave
function is [¥,) = Y, ax|¥,). For example, in the
casef =2 andN = 2, the most general eigenfunc-
tion of the boson number operatori,) = a1[2, 0] +
az[0, 2] + az[1, 1]. Occasionally for plotting purposes

we use a basis that emphasises the positions of the two [ . « «

bosons along the chaimy andn». In this case our
example wave function becomesg,) = c1.1[2, 0] +
2210, 2] + %(61,2 + c2.1)[1, 1], wherecy 2 indicates
that the first boson is locatedat = 1 and the second
one innz = 2. As bosons are indistinguishable quanta,

C,',j =Cj,,'.
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In homogeneous quantum lattices with periodic
boundary conditions, it is possible to block-diagona-
lize the Hamiltonian operator using eigenfunctions of
the translation operator with fixed value of the momen-
tumk [2].

As shown inFig. 1, if the anharmonicity parameter
is high enough, there exists an isolated ground state
eigenvalue for each which corresponds to a quantum
breather. By this we mean there is a high probability
of finding the quanta on the same site, but due to the
translational invariance of the system, an equal proba-
bility of finding these quanta at any site of the system.
In these cases, some analytical expressions can be ob-
tained in some asymptotic limits (studies of this prob-
lem go back to the 30s, for recent discussiong2¢k
9)).

In particular, in the cas&v = 2 and working at
k = 0 for simplicity, the ground state unnormalized
eigenfunction is

W) =[20...0]+[020...0]+---+1[0...02]
+O(y71),

i.e., on a lattice of lengthy, the unnormalized coeffi-

cientsa; of the first f terms are equal to unity and the
restare0 (y ~1). In the extreme of complete spatial lo-
calization, one of these would be unity and the rest
zero.
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Fig. 1. Eigenvalue€ (k). N =2, f =19 andy = 4.
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3. Trappingin alattice with broken trandlational case such a geometry can be modelled by adding a
symmetry term such as
@t m(blbm +blbe), @)

In this section we study how the componeats
change as the translational invariance of the lattice is to the Hamiltonian, wheré andm are the two sites
broken in various ways. In these cases, the Hamil- brought close together by the twist, ang,, is the
tonian operator cannot be block-diagonalized using separation distance relative to the unit length of the
eigenvectors of the translation operator. Although the unperturbed chain. This can be considered as a special
computational effort increases, it is still possible to case of a chain with long-range coupling. See §149
calculate eigenvalues and eigenvectorg #ndN are for a more realistic protein simulation, arf@i2] for
small enough, by using algebraic manipulation meth- other discussions on the effects of chain geometry on
ods to construct an exact Hamiltonian matrix in alge- moving breathers.
braic form and then a numerical eigenvalue solver. In  The bent chain ifrig. 2(b) shows another possible
this section we restrict ourselves to the simplest non- geometry which has beeruslied recently in the clas-
trivial caseN = 2. sical DNLS case. In this case we have an abrupt bend

One simple way to break translational invariance is which is simulated by adding an additional term as in
to consider a finite chain with no-flux boundary con- (2) butwheren =mo—1, £ =mo+1, whereng is the
ditions. In this case, the solution becomes weakly lo- vertex of the bend. By varying the valuesaf,, = «,

calized around the middle of the lattice. ffis high all angles between 0 and can be simulated approx-
enough, and we ignore boundary effects, this case re-imately. The influence of this geometry has been an-
duces to the homogeneous lattice case. alyzed in the DNLS context ifiL3], and in nonlinear

An alternative mechanisnotbreak translational  Klein—Gordon systems ifi4]. This geometry is of in-
invariance is the existence of local inhomogeneities terest in nonlinear photonic crystals waveguides and
or impurities that can adfct the nonlinear localized  circuits[15].
modes considerably. In systems with both nonlinearity ~ Localization due to random variation of the lat-
and impurities, it is important to understand the in- tice parameters has long been studied in the harmonic
terplay between these two sources of localization. For model since the pioneering work of Andersfi6].
these cases we break translational invariance by mak-Our interest is to see what new localization effects the
ing one or more of the; or thee; depend ory. This anharmonic terms bring to the model, and to what ex-
may occur because of localized impurities, or because tent the anharmonic effects enhance the Anderson-like
the chain geometry becomes nonuniform. Two exam- localization effect when this is presentin the harmonic
ples of nonuniform geometries are showrFig. 2 model ¢; = 0). See also the discussiong17].

Fig. 2(a) shows a circular chain twisted into a Most of our findings are not specific to the QDNLS
figure-of-eight, so that two sites on the chain, well sep- model, for example, we have repeated our calculations
arated along the length of the chain, become spatially using the attractive fermionic Hubbard model with two
close. This toy model for a globular protein was stud- particles of opposite spirj48]. Although all the mod-
ied in[10], where it was shown that moving breathers els we consider have a conserved number, in general
described by the classical DNLS equation could be- they are not quantum integrable.
come trapped at the cross-over point. In the quantum  We now consider the effects introduced above in

more detail.

4. Localization in a straight chain with impurities

In this version of our model, in order to explore
the interplay between thedtalization induced by the
nonlinearity and the influence of a impurity in these
Fig. 2. Two nonuniform chain geometries. localized states, we introduce a local inhomogeneity

(b)
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Fig. 3. Square wave function amplitudies ; 12 corresponding to the ground state as a function of the positipns, of the two bosons on the
chain. We havef =19 andy =4 and a point impurity at = 10. (a) Homogeneous chain, fa), = 4.1, () yim = 4.4, (d) yim = 5.

1

in the anharmonic parameter. To isolate the effect of
the impurity of other effects related to the finite size of
the chain, we retain the gedic boundary conditions.

091

The anharmonicity parameterjig = yim, andy; =y o7t
for j #¢. 06

In the homogeneous systemsf = ), with y large N;co.s-
enough, as discussed above, the ground state is “lo- 04
calized” in the sense that there exist a high proba- oal

bility to find the two quanta on the same site, but
with equal probability at any site of the chain. For
the chain with a point impurity, we plot ifrig. 3

the coefficients of the components of the ground state
wave function for various values @fm. AS yim in-
creases, these coefficients start from an initial spa- rig. 4. Some components of the wave function corresponding to the
tially uniform distribution, but then localize around ground stateN =2, f =19 andy = 4. Curves correspond to (—)

the site of the impurity, in this case dt= 10. At two bosons centered on the impurity; {—) two bosons in adjacent

the Iargest value Oﬁm shown, over 60% of the wave sites with one of th_em centered on the impu_rity,-XMo bosons
function is in the statd0...020...0], with the two separated by one site and one of them at the impurity.

bosons at site 10. Also, there exists some localiza-

tion corresponding to the coefficients of states where  In Fig. 4, we plot the size of components of the
the two bosons are on neighbouring sites, and one of wave function of the ground state corresponding to the
them at the impurity, but ik effect is much weaker  two bosons centered at the local inhomogeneity at the
for these components. Other components are evensame site, at adjacent sites, and separated by one site.
smaller. We observe that the localization increases very rapidly
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with the magnitude of the impurity. Note that there is bosons in contiguous sites show a weaker localization
no Anderson-like effect in this case as the harmonic as before. Similar results are obtained for other values
terms are homogeneous. of a, ¢, with the strength of the localization depend-
ing on the size o, (. These trapped quantum states
mirror the trapping of the classical mobile breather
5. Thetwisted chain studied in[10].

For the twisted chain as shownfig. 2(a), the only
extra parameter is,, ¢, the strength of the long range
coupling between the twepatially adjacent sites:
and¢. As an example we consider the casg, = 1, For the bent QDNLS chainHg. (b)), we follow
f =19,m =5, and¢ = 15. Fig. 5shows the compo-  the classical DNLS treatmeifit3]. We consider the
nents of the ground state wave function, plotted as a Hamiltonian(1) on a finite lattice with the additional
function ofy . term(2). The parameter is related to the wedge angle

A breather localized at the crossover point= 5, 6 througha = 3(1 — cos?) 1, and we take the site of
¢ =15, will show an enhanced coefficient correspond- the vertex to beng = %(f +1).
ing to localization at the two points of the chain which Fig. 6 shows the components of the wave function
come together. Witly = 0, we see some small local- for various values of). Fig. 7 shows some compo-
ization effect at sites: and ¢ for the [0...020...0] nents of the ground state wave function correspond-
coefficients at the crossover points, corresponding to aing to the neighbors of the vertex, for both= 0
harmonic Anderson-like effect. However, for nonzero andy = 4. If the anglef is close tox, the behav-

y we see that this effect is strongly enhanced. The co- ior is similar to the straight chain. The ground state
efficient of the components corresponding to the two is weakly localized around the center (vertex) of the

6. Thebent chain
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Fig. 5. Square wave function amplitudies ; |2 corresponding to the ground state as a function of the positipns, of the two bosons along
the twisted chain. Long range interaction between sites 5 and¢ = 15 with &,y = 1 and f = 19. (a)y = 0 (harmonic case); (by = 2;
©y=3dy=4
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Fig. 6. Square wave function amplitudqc‘::c,,ﬂ2 corresponding to the ground state as a function of the positigns, of the two bosons.

f=19andy =4.(a)0 =mx; (b)0 =x/3; (c)0 =m/10; (d)6 = /100.
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Fig. 7. Some components of the wave function corresponding to the
ground stateN = 2, f =19. (—) two bosons in a nonlocalized
state at neighbouring sites of the vertex ané 0, (- - -) two bosons

in a localized state at neighbouring sites of the vertex ard 4,

(- - -) two bosons in a nonlocalized state at neighbouring sites of the
vertex andy = 4.

chain. Asf decreases, the localization around the ver-
tex increases, and when this angle is small enough,
the largest components of the wave function in the
ground state consists of states localized around the ver-
tex and the two connected neighboring sites. In the
limit & — 0, the lattice becomes a T-junction, a model
of interest in its own right. It is interesting that the
localization in the anharmonic model exhibits a max-
imum até ~ 0.5, whereas in the harmonic case the
maximum is ab = 0. Also the anharmonic enhance-
ment goes to zero &— 0.

We consider here only a long-range interaction be-
tween the two vertices of the chain. More realistic
models with long-range interaction between all neigh-
bours in the chain give qualitatively the same local-
ization phenomena: a full description will be given
elsewhere.

7. Higher number of quanta

In previous sections, we restricted our studies to
the caseN = 2. Proceeding as the same way, it is
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hand figure shows the corresponding coefficients of

0.09
0.9 the [310...],[0310.. ], ... components. Again some
0.8 0.08 localization is found asim increases, but this effect
0 0.07 is much weaker for these components. Other compo-
7 nents (not shown) are even smaller.
0.06
0.6
305 0.05 _
© 04 0.04 8. Conclusions
0.3 0.03 We have shown some results related to the exis-
02 0.02 tence and prope_rties of quantum brea@hers ina sy_stem
0.01 of bosons described by the quantum discrete nonlinear
0.1 ' Schradinger equation. Spatial localizion occurs due to
0 s 10 0 10 the nonlinearity and to the influence of local inho-

mogeneities. In particular, we have found that these
) ) ] ) ] local inhomogeneities, due to geometrical factors and
Fig. 8. Square wave function amplitudgs, | corresponding to 4 range interactions or impurities in the anhar-
some components of the ground stafe= 11, N =4 andy = 2. LY ; . .
Point impurity at the site? = 6. (- - -) homogeneous chain case, ~MONicity parameter, break the translational invariance
Yim =2, (- - ) ¥im = 2.1, (—) yim = 2.5. of the system and localize the ground state around a
particular site of the chain. We expect that these re-
sults could be extended to a variety of systems.
possible—in principle—to construct the Hamiltonian
matrix for any value of the quantum numb&r and
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