
th two or
m
tion, also
Physics Letters A 331 (2004) 201–208

www.elsevier.com/locate/pla

Trapping in quantum chains

J.C. Eilbeck∗, F. Palmero1

Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

Received 18 December 2003; received in revised form 13 August 2004; accepted 26 August 2004

Available online 11 September 2004

Communicated by A.P. Fordy

Abstract

A quantum breather on a translationally invariant one-dimensional anharmonic lattice is an extended Bloch state wi
more particles in a strongly correlated state. In this Letter we study a periodic lattice containingbosons described by the quantu
discrete nonlinear Schrödinger equation (QDNLS), a quantum version of the discrete nonlinear Schrödinger equa
known as the boson Hubbard model. We discuss several effects that break the lattice symmetry and lead to spatial localization
of the breather.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The localization of energy by nonlinearity in cla
sical lattices has been much studied recently. C
responding localized states, called intrinsic localiz
modes or discrete breathers, have been the subje
intense theoretical and experimental investigation[1].
Results on the quantum equivalent of discrete class
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breathers are less numerous, cf.[2,3] for some the-
oretical results and[4] for some experimental work
Studies of quantum modes on small lattices may
relevant to studies of quantum dots and quantum c
puting (cf.[5]), and for studies of Bose–Einstein co
densates in periodic optical traps[6].

In this Letter, we present some results rela
to quantum lattice problems, in particular in on
dimensional lattices with a small number of quan
We study a periodic lattice withf sites containing
bosons, described by the quantum discrete nonli
Schrödinger equation (QDNLS), also known as
boson Hubbard model. This is a quantum version
the discrete nonlinear Schrödinger equation, a part
larly simple model for a lattice of coupled anharmoni
.
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oscillators, which has been used to describe the
namics of a great variety of systems[7]. The QDNLS
Hamiltonian is given by

(1)Ĥ = −
f∑

j=1

1

2
γjb

†
jb

†
j bj bj + εjb

†
j (bj−1 + bj+1),

whereb
†
j andbj are standard bosonic operators,γj/εj

is the ratio of anharmonicity to nearest neighbor h
ping energy, and the chain is subject to periodic bou
ary conditions with periodf . Initially we consider the
case where the chain is translationally invariant, i
γj = γ andεj = ε are independent ofj . In general we
takeε = 1.

The Hamiltonian(1) has an important conserve
quantity, the numberN = ∑f

j=1 b
†
j bj , which enables

the total Hamiltonian to be block-diagonalised a
greatly simplifies the analysis. In this Letter we restr
ourselves to a study of small lattices and a small nu
ber of quanta where numerically exact solutions
be found. Initially we focus on the simplest nontriv
case,N = 2, where bound states corresponds to bo
two-vibron states, as observed experimentally in s
eral systems[8]. We then extend these results to mo
complicated situations withN = 3 andN = 4, noting
that many of these results are valid for larger val
of N .

2. Quantum breathers in a translational invariant
lattice

In QDNLS case, we use a number state ba
|ψn〉 = [n1, n2, . . . , nf ], whereni represents the num
ber of quanta at sitei (N = ∑

ni ). A general wave
function is |Ψn〉 = ∑

n an|ψn〉. For example, in the
casef = 2 andN = 2, the most general eigenfun
tion of the boson number operator is|Ψn〉 = a1[2,0]+
a2[0,2] + a3[1,1]. Occasionally for plotting purpose
we use a basis that emphasises the positions of the
bosons along the chain,n1 and n2. In this case our
example wave function becomes|Ψn〉 = c1,1[2,0] +
c2,2[0,2] + 1√

2
(c1,2 + c2,1)[1,1], wherec1,2 indicates

that the first boson is located atn1 = 1 and the secon
one inn2 = 2. As bosons are indistinguishable quan
ci,j = cj,i .
In homogeneous quantum lattices with perio
boundary conditions, it is possible to block-diagon
lize the Hamiltonian operator using eigenfunctions
the translation operator with fixed value of the mom
tum k [2].

As shown inFig. 1, if the anharmonicity paramete
is high enough, there exists an isolated ground s
eigenvalue for eachk which corresponds to a quantu
breather. By this we mean there is a high probab
of finding the quanta on the same site, but due to
translational invariance of the system, an equal pro
bility of finding these quanta at any site of the syste
In these cases, some analytical expressions can b
tained in some asymptotic limits (studies of this pro
lem go back to the 30s, for recent discussions see[2,7,
9]).

In particular, in the caseN = 2 and working at
k = 0 for simplicity, the ground state unnormaliz
eigenfunction is

|Ψ 〉 = [20. . .0] + [020. . .0] + · · · + [0 . . .02]
+ O

(
γ −1),

i.e., on a lattice of lengthf , the unnormalized coeffi
cientsai of the firstf terms are equal to unity and th
rest areO(γ −1). In the extreme of complete spatial l
calization, one of theseai would be unity and the res
zero.

Fig. 1. EigenvaluesE(k). N = 2, f = 19 andγ = 4.
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3. Trapping in a lattice with broken translational
symmetry

In this section we study how the componentsai

change as the translational invariance of the lattic
broken in various ways. In these cases, the Ha
tonian operator cannot be block-diagonalized us
eigenvectors of the translation operator. Although
computational effort increases, it is still possible
calculate eigenvalues and eigenvectors iff andN are
small enough, by using algebraic manipulation me
ods to construct an exact Hamiltonian matrix in alg
braic form and then a numerical eigenvalue solver
this section we restrict ourselves to the simplest n
trivial caseN = 2.

One simple way to break translational invariance
to consider a finite chain with no-flux boundary co
ditions. In this case, the solution becomes weakly
calized around the middle of the lattice. Iff is high
enough, and we ignore boundary effects, this case
duces to the homogeneous lattice case.

An alternative mechanism to break translationa
invariance is the existence of local inhomogenei
or impurities that can affect the nonlinear localize
modes considerably. In systems with both nonlinea
and impurities, it is important to understand the
terplay between these two sources of localization.
these cases we break translational invariance by m
ing one or more of theγj or theεj depend onj . This
may occur because of localized impurities, or beca
the chain geometry becomes nonuniform. Two exa
ples of nonuniform geometries are shown inFig. 2.

Fig. 2(a) shows a circular chain twisted into
figure-of-eight, so that two sites on the chain, well s
arated along the length of the chain, become spat
close. This toy model for a globular protein was stu
ied in [10], where it was shown that moving breathe
described by the classical DNLS equation could
come trapped at the cross-over point. In the quan

Fig. 2. Two nonuniform chain geometries.
case such a geometry can be modelled by addin
term such as

(2)α�,m

(
b

†
�bm + b†

mb�

)
,

to the Hamiltonian, where� andm are the two sites
brought close together by the twist, andα�,m is the
separation distance relative to the unit length of
unperturbed chain. This can be considered as a sp
case of a chain with long-range coupling. See also[11]
for a more realistic protein simulation, and[12] for
other discussions on the effects of chain geometry
moving breathers.

The bent chain inFig. 2(b) shows another possib
geometry which has been studied recently in the clas
sical DNLS case. In this case we have an abrupt b
which is simulated by adding an additional term as
(2)but wherem = m0−1, � = m0+1, wherem0 is the
vertex of the bend. By varying the values ofα�,m = α,
all angles between 0 andπ can be simulated approx
imately. The influence of this geometry has been
alyzed in the DNLS context in[13], and in nonlinear
Klein–Gordon systems in[14]. This geometry is of in-
terest in nonlinear photonic crystals waveguides
circuits[15].

Localization due to random variation of the la
tice parameters has long been studied in the harm
model since the pioneering work of Anderson[16].
Our interest is to see what new localization effects
anharmonic terms bring to the model, and to what
tent the anharmonic effects enhance the Anderson
localization effect when this is present in the harmo
model (γi = 0). See also the discussions in[17].

Most of our findings are not specific to the QDNL
model, for example, we have repeated our calculat
using the attractive fermionic Hubbard model with tw
particles of opposite spins[18]. Although all the mod-
els we consider have a conserved number, in gen
they are not quantum integrable.

We now consider the effects introduced above
more detail.

4. Localization in a straight chain with impurities

In this version of our model, in order to explo
the interplay between the localization induced by th
nonlinearity and the influence of a impurity in the
localized states, we introduce a local inhomogen
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Fig. 3. Square wave function amplitudes|ci,j |2 corresponding to the ground state as a function of the positionsn1, n2 of the two bosons on the
chain. We havef = 19 andγ = 4 and a point impurity at� = 10. (a) Homogeneous chain, (b)γim = 4.1, (c)γim = 4.4, (d)γim = 5.
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in the anharmonic parameter. To isolate the effec
the impurity of other effects related to the finite size
the chain, we retain the periodic boundary conditions
The anharmonicity parameter isγ� = γim, andγj = γ

for j �= �.
In the homogeneous system (γim = γ ), with γ large

enough, as discussed above, the ground state is
calized” in the sense that there exist a high pro
bility to find the two quanta on the same site, b
with equal probability at any site of the chain. F
the chain with a point impurity, we plot inFig. 3
the coefficients of the components of the ground s
wave function for various values ofγim. As γim in-
creases, these coefficients start from an initial s
tially uniform distribution, but then localize aroun
the site of the impurity, in this case at� = 10. At
the largest value ofγim shown, over 60% of the wav
function is in the state[0 . . .020. . .0], with the two
bosons at site 10. Also, there exists some local
tion corresponding to the coefficients of states wh
the two bosons are on neighbouring sites, and on
them at the impurity, but this effect is much weake
for these components. Other components are e
smaller.
Fig. 4. Some components of the wave function corresponding to
ground state.N = 2, f = 19 andγ = 4. Curves correspond to (—
two bosons centered on the impurity, (−·−) two bosons in adjacen
sites with one of them centered on the impurity, (· · ·) two bosons
separated by one site and one of them at the impurity.

In Fig. 4, we plot the size of components of th
wave function of the ground state corresponding to
two bosons centered at the local inhomogeneity at
same site, at adjacent sites, and separated by one
We observe that the localization increases very rap
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with the magnitude of the impurity. Note that there
no Anderson-like effect in this case as the harmo
terms are homogeneous.

5. The twisted chain

For the twisted chain as shown inFig. 2(a), the only
extra parameter isαm,�, the strength of the long rang
coupling between the twospatially adjacent sitesm
and�. As an example we consider the caseαm,� = 1,
f = 19,m = 5, and� = 15. Fig. 5 shows the compo
nents of the ground state wave function, plotted a
function ofγ .

A breather localized at the crossover pointm = 5,
� = 15, will show an enhanced coefficient correspo
ing to localization at the two points of the chain whi
come together. Withγ = 0, we see some small loca
ization effect at sitesm and� for the [0 . . .020. . .0]
coefficients at the crossover points, corresponding
harmonic Anderson-like effect. However, for nonze
γ we see that this effect is strongly enhanced. The
efficient of the components corresponding to the t
bosons in contiguous sites show a weaker localiza
as before. Similar results are obtained for other va
of αm,�, with the strength of the localization depen
ing on the size ofαm,�. These trapped quantum stat
mirror the trapping of the classical mobile breath
studied in[10].

6. The bent chain

For the bent QDNLS chain (Fig. 2(b)), we follow
the classical DNLS treatment[13]. We consider the
Hamiltonian(1) on a finite lattice with the additiona
term(2). The parameterα is related to the wedge ang
θ throughα = 1

2(1− cosθ)−1, and we take the site o
the vertex to bem0 = 1

2(f + 1).
Fig. 6 shows the components of the wave funct

for various values ofθ . Fig. 7 shows some compo
nents of the ground state wave function correspo
ing to the neighbors of the vertex, for bothγ = 0
and γ = 4. If the angleθ is close toπ , the behav-
ior is similar to the straight chain. The ground sta
is weakly localized around the center (vertex) of
Fig. 5. Square wave function amplitudes|ci,j |2 corresponding to the ground state as a function of the positionsn1, n2 of the two bosons along
the twisted chain. Long range interaction between sitesm = 5 and� = 15 with αm� = 1 andf = 19. (a)γ = 0 (harmonic case); (b)γ = 2;
(c) γ = 3; (d) γ = 4.
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.
Fig. 6. Square wave function amplitudes|ci,j |2 corresponding to the ground state as a function of the positionsn1, n2 of the two bosons
f = 19 andγ = 4. (a)θ = π ; (b) θ = π/3; (c) θ = π/10; (d)θ = π/100.
er-
gh,

the
ver-
the
el
e
x-

he
e-

be-
tic
gh-
al-
n

to
is
Fig. 7. Some components of the wave function corresponding to the
ground state.N = 2, f = 19. (—) two bosons in a nonlocalized
state at neighbouring sites of the vertex andγ = 0, (· · ·) two bosons
in a localized state at neighbouring sites of the vertex andγ = 4,
(- - -) two bosons in a nonlocalized state at neighbouring sites of the
vertex andγ = 4.

chain. Asθ decreases, the localization around the v
tex increases, and when this angle is small enou
the largest components of the wave function in
ground state consists of states localized around the
tex and the two connected neighboring sites. In
limit θ → 0, the lattice becomes a T-junction, a mod
of interest in its own right. It is interesting that th
localization in the anharmonic model exhibits a ma
imum at θ ≈ 0.5, whereas in the harmonic case t
maximum is atθ = 0. Also the anharmonic enhanc
ment goes to zero asθ → 0.

We consider here only a long-range interaction
tween the two vertices of the chain. More realis
models with long-range interaction between all nei
bours in the chain give qualitatively the same loc
ization phenomena: a full description will be give
elsewhere.

7. Higher number of quanta

In previous sections, we restricted our studies
the caseN = 2. Proceeding as the same way, it
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Fig. 8. Square wave function amplitudes|an|2 corresponding to
some components of the ground state.f = 11, N = 4 andγ = 2.
Point impurity at the site� = 6. (· · ·) homogeneous chain cas
γim = 2, (- - -) γim = 2.1, (—) γim = 2.5.

possible—in principle—to construct the Hamiltoni
matrix for any value of the quantum numberN and
to calculate the spectrum. However, the computatio
effort increases rapidly and can go beyond the l
its of computational convenience. Nevertheless,
have studied some cases involving a higher numbe
bosons. In particular, the casesN = 3 andN = 4.

In general, we have found the same qualitative
havior as in the previous case. In the homogene
system, if the anharmonic parameter is high enou
the ground state is mainly a bound state, in the se
that there exists a high probability to find all th
bosons at the same point of the lattice, but due to
translational invariance of the system, with equal pr
ability of finding these quanta at any site of the cha
When we introduce some local inhomogeneities in
system, we have observed similar localization p
nomena as noted above. This effect is stronger w
the number of bosons increases.

In Fig. 8 we plot the coefficients of some of th
components of the ground state wave function for
caseN = 4 with a point impurity for various val
ues ofγim. The left-hand figure shows the coefficien
of the [40. . .], [040. . .], . . . components. Asγim in-
creases, these coefficients start from an initial s
tially uniform distribution, but then localize around th
site of the impurity, in this case at� = 6. The right-
hand figure shows the corresponding coefficients
the [310. . .], [0310. . .], . . . components. Again som
localization is found asγim increases, but this effec
is much weaker for these components. Other com
nents (not shown) are even smaller.

8. Conclusions

We have shown some results related to the e
tence and properties of quantum breathers in a sys
of bosons described by the quantum discrete nonlin
Schrödinger equation. Spatial localizion occurs du
the nonlinearity and to the influence of local inh
mogeneities. In particular, we have found that th
local inhomogeneities, due to geometrical factors
to long-range interactions or impurities in the anh
monicity parameter, break the translational invaria
of the system and localize the ground state aroun
particular site of the chain. We expect that these
sults could be extended to a variety of systems.
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