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THE CALOGERO–BOGOYAVLENSKII–SCHIFF EQUATION IN 2+1

DIMENSIONS

M. S. Bruzón,∗ M. L. Gandarias,∗ C. Muriel,∗ J. Ramı́rez,∗ S. Saez,∗ and F. R. Romero†

We use the classical and nonclassical methods to obtain symmetry reductions and exact solutions of the

(2+1)-dimensional integrable Calogero–Bogoyavlenskii–Schiff equation. Although this (2+1)-dimensional

equation arises in a nonlocal form, it can be written as a system of differential equations and, in potential

form, as a fourth-order partial differential equation. The classical and nonclassical methods yield some

exact solutions of the (2+1)-dimensional equation that involve several arbitrary functions and hence exhibit

a rich variety of qualitative behavior.
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1. Introduction

The study of multidimensional integrable systems is one of the main themes in integrable systems.
Several integrable models have been recently developed in the context of (2+1)-dimensional equations.

In this paper, we discuss the (2+1)-dimensional integrable Calogero–Bogoyavlenskii–Schiff (CBS) equa-
tion

ut + uuz +
1
2
ux∂

−1
x uz +

1
4
uxxz = 0, (1)

where ∂−1
x f =

∫
f dx.

This equation was constructed by Bogoyavlenskii and Schiff in different ways. Namely, Bogoyavlenskii
used the modified Lax formalism [1]–[3], whereas Schiff obtained the same equation by reducing the self-dual
Yang–Mills equation [4]. In [4] and [5], it was shown that Eq. (1) is transformed into a trilinear form. In [1],
it was shown that the (2+1)-dimensional equation written in the potential form

utx − 4uxuxz − 2uxxuz + uxxxz = 0 (2)

admits a Lax representation and is integrable by the one-dimensional inverse scattering transform. In [2],
Bogoyavlenskii proved that an equation equivalent to Eq. (2) has an overturning soliton. In [3], several
periodic and breaking solutions were constructed for (2) as well as for a modified equation related to Eq. (2)
via the Miura transformation v2 ± vx = ux.

In [6], Toda and Yu constructed some new 2+1 integrable models using the Calogero method. In this
method, the (2+1)-dimensional equations are derived considering the Lax pair L and T and modifying the
T operator to include another spatial dimension z. They also thus derived the (2+1)-dimensional CBS
equation from the Korteweg–de Vries equation.
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Although the (2+1)-dimensional CBS equation arises in a nonlocal form, it can be written as the
system of differential equations

vx − uz = 0,

2uxv + uxxz + 4ut + 4uuz = 0,
(3)

as well as in the potential form

4htx + 4hxhxz + 2hxxhz + hxxxz = 0. (4)

In this paper, we apply the classical Lie group method of infinitesimal transformations to system (3), as
well as to the related potential equation (4). We point out that the classical Lie symmetries and similarity
reduction for system (3) were derived in [7]. Nevertheless, by constructing invariant solutions from the
optimal system, we bring out some similarity reductions that do not appear explicitly in [7]. We also
obtain some new reduced systems of 1+1 partial differential equations (PDEs) and new systems of ordinary
differential equations (ODEs).

By using these new reduced ODEs, we also obtain exact solutions for CBS equation (1). The most
interesting solutions are the soliton solutions, localized on a curve and decaying exponentially away from
the curve. Some of these solutions were derived by Bogoyavlenskii in [3]. As far as we know, these soliton
solutions have not been derived before using symmetry methods.

2. Lie symmetries for the system

In this section, we perform Lie symmetry analysis for (2+1)-dimensional system (3). We consider a
one-parameter Lie group of infinitesimal transformations in (x, z, t, u, v) given by

x∗ = x+ εX(x, z, t, u, v) +O(ε2),
z∗ = z + εZ(x, z, t, u, v) +O(ε2),
t∗ = t+ εT (x, z, t, u, v) +O(ε2),
u∗ = u+ εU(x, z, t, u, v) +O(ε2),
v∗ = v + εV (x, z, t, u, v) +O(ε2),

(5)

where ε is the group parameter. We then require that this transformation leave the set of solutions of
system (3) invariant. This leads to an overdetermined linear system of equations for the infinitesimals
X(x, z, t, u, v), Z(x, z, t, u, v), T (x, z, t, u, v), U(x, z, t, u, v), and V (x, z, t, u, v). The associated Lie algebra
of infinitesimal symmetries is the set of vector fields of the form

v = X
∂

∂x
+ Z

∂

∂z
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v
. (6)

After the infinitesimals are determined, the symmetry variables are found by solving the invariant-surface
conditions

Φ1 ≡ X
∂u

∂x
+ Z

∂u

∂z
+ T

∂u

∂t
− U = 0, Φ2 ≡ X

∂v

∂x
+ Z

∂u

∂z
+ T

∂v

∂t
− V = 0. (7)

Applying the classical method to system (3) yields a system of equations that leads to a six-parameter
Lie group. Associated with this Lie group, we have a Lie algebra that can be represented by the generators

v1 =
∂

∂t
, v2 =

∂

∂z
, v3 = t

∂

∂z
+

∂

∂u
,

v4 = t
∂

∂t
+ z

∂

∂z
− v

∂

∂v
,

v5 = tx
∂

∂x
+ 2t2

∂

∂t
+ 2tz

∂

∂z
+ (2z − 2tu)

∂

∂u
+ (2x− 3tv)

∂

∂v
,

v6 = x
∂

∂x
− 2z

∂

∂z
− 2u

∂

∂u
+ v

∂

∂v
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and the infinite-dimensional

vα = α(t)
∂

∂x
+ 2α′(t)

∂

∂v
.

3. Optimal systems and reductions

To construct the one-dimensional optimal system following Olver, we construct the commutator table
(Table 1) and the adjoint table (Table 2), which shows the separate adjoint actions of each element in vi,
i = 1, . . . , 6, as it acts on all other elements. This construction is easily done by summing the Lie series.

Table 1

v1 v2 v3 v4 v5 v6

v1 0 0 v2 v1 v6 + 4v4 0

v2 0 0 0 v2 2v3 −2v2

v3 −v2 0 0 0 0 −2v3

v4 −v1 −v2 0 0 v5 0

v5 −(v6 + 4v4) −2v3 0 −v5 0 0

v6 0 2v2 2v3 0 0 0

Commutator table for the Lie algebra.

Table 2

v1 v2 v3 v4 v5 v6

v1 v1 v2 v3 − εv2 v4 − εv1 v5 − ε(v6 + 4v4) v6

v2 v1 v2 v3 v4 − εv2 v5 − 2εv3 v6 + 2εv2

v3 v1 + εv2 v2 v3 v4 v5 v6 + 2εv3

v4 eεv1 eεv2 v3 v4 e−εv5 v6

v5 v1 + ε(v6 + 4v4) v2 + 2εv3 v3 v4 + εv5 v5 v6

v6 v1 e−2εv2 e−2εv3 v4 v5 v6

Adjoint table.

The corresponding generators of the optimal system of subalgebras are

〈av1 + v6〉, 〈v6〉, 〈v4 + bv6〉,

〈av1 + v3〉, 〈v3〉, 〈v1 + bv2〉,
where a ∈ R, a �= 0, and b ∈ R is arbitrary.

In the following, we list the corresponding similarity variables and similarity solutions as well as the
systems of PDEs obtained when system (3) is reduced via the generators obtained by adding the infinite-
dimensional generator vα to the generators of the optimal system.
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Reduction 1. Using the generator av1 + v6 + vα, we obtain the similarity variables and similarity
solutions

w1 = e−t/ax− 1
a

∫
f(t)e−t/a dt, w2 = e2t/az,

u = e−2t/ah1(w1, w2), v = et/a

(
h2(w1, w2) +

2
a

∫
f ′(t)e−t/a dt

)

and the systems of PDEs S1

h2w1 − h1w2 = 0,

8w2h1w2 − 4w1h1w1 + 2ah2h1w1 + 4ah1h1w2 + ah1w1w1w2 − 8h1 = 0.

Reduction 2. Using the generator v6+vα, we obtain the similarity variables and similarity solutions

w1 = t, w2 = z(x+ α(t))2,

u = zh1(w1, w2), v = z−1/2h2(w1, w2)− 2α′(t)

and the systems of PDEs S2

w2h1w2 − 2
√
w2h2w2 + h1 = 0,

2h1w2w2w2w
3
2 + 7h1w2w2w

2
2 + 2h1h1w2w

2
2 +

+ 2h1w2h2w
3/2
2 + 2h1w2w2 + 2h1w1w2 + 2h2

1w2 = 0

with x+ α(t) > 0.

Reduction 3. Using the generator v4 + bv6 + vα, we obtain the similarity variables and similarity
solutions

w1 =
x

tb
−

∫
f(t)
tb+1

dt, w2 = t2b−1z,

u =
1
t2b
h1(w1, w2), v =

(
h2(w1, w2) + 2

∫
α′(t)
tb

dt

)
tb−1

and the systems of PDEs S3

h2w1 − h1w2 = 0,

8bw2h1w2 − 4w2h1w2 − 4bw1h1w1 + 2h2h1w1 + 4h1h1w2 + h1w1w1w2 − 8bh1 = 0.

Reduction 4. Using the generator av1 + v3 + vα, we obtain the similarity variables and similarity
solutions

w1 = x− 1
a

∫
α(t) dt, w2 = z − t2

2b
,

u =
t

a
+ h1(w1, w2), v =

2f(t)
b

+ h2(w1, w2)

and the systems of PDEs S4

h2w1 − h1w2 = 0,

2ah2h1w1 + 4ah1h1w2 + ah1w1w1w2 + 4 = 0.
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Reduction 5. Using the generator v3+vα, we obtain the similarity variables and similarity solutions

w1 = t, w2 = z − xt

α(t)
,

u =
z

t
+ h1(w1, w2), v =

2α′(t)x
α(t)

+ h2(w1, w2)

and the systems of PDEs S5

− w2
1h2w2 − αh1w2w1 + 2αw1w1 − α = 0,

4α2h1w2w2 + h1w2w2w2w
3
1 − 2αh1w2h2w

2
1 + 4α2h1h1w2w1 + 4α2h1 = 0.

Reduction 6. Using the generator vα, we obtain the similarity variables and similarity solutions

w1 = t, w2 = z, u = h1(w1, w2), v = 2x
α′(t)
α(t)

+ h2(w1, w2)

and the system of 1+1 PDEs S6

2
αw1

α
− h1w2 = 0,

4h1h1w2 + h1w1 = 0.

Reduction 7. Using the generator v1 + av2 + vα, we obtain the similarity variables and similarity
solutions

w1 = x−
∫
α(t) dt, w2 = z − at, u = h1(w1, w2), v = 2α(t) + h2(w1, w2)

and the system of PDEs S7

h2w1 − h1w2 = 0,

2h2h1w1 + 4h1h1w2 + h1w1w1w2 − 4ah1w2 = 0.

Although the classical symmetries for system (3) were derived in [7], some of the reductions do not
appear explicitly in that work. Among these systems are S2, S5, and S6.

4. Further symmetries and exact solutions

In several cases, the reduced systems of 1+1 PDEs admit symmetries that lead to further reductions to
systems of ODEs. We again use the techniques of Lie group theory. We consider the symmetries of systems
S2 and S7 here.

System S2 admits the symmetries

v21 =
∂

∂w1
,

v22 = z2
1

∂

∂z1
+ 2z1z2

∂

∂z2
+ (1− 2z1h1)

∂

∂h1
+ (z1/2

2 − z1h2)
∂

∂h2
,

v23 = 2z1
∂

∂z1
+ 2z2

∂

∂z2
− 2h1

∂

∂h1
− h2

∂

∂h2
.
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Using v23, we obtain the similarity variable and similarity solutions

w =
z1
z2
, h1 =

1
z1
g(w), h2 =

1
z2
1

k(w)

and the system of ODEs

wg′ − g − 2w3/2k′ = 0,

2w4g′′′ − 5w3g′′ − 2w3/2g′k − (2g − 2)wg′ + 2g2 − 2g = 0.

We also consider system S7, which admits the symmetries

v71 =
∂

∂w1
,

v72 = z1
∂

∂z1
− 2(h1 − a)

∂

∂h1
− h2

∂

∂h2
,

vβ = β(w2)
∂

∂z2
− β′(z2)h2

∂

∂h2
.

Using cv72 + vβ , we obtain the similarity variable and similarity solutions

w = w1 exp
(
−

∫
c

β(w2)
dw2

)
,

h1 = a+ g(w) exp
(
−2

∫
c

β(w2)
dw2

)
,

h2 = k(w)
1

β(w2)
exp

(
−

∫
c

β(w2)
dw2

)

and the system of PDEs

cg′w + k′ + 2gc = 0,

2kg′ − cg′′′w − 4cgg′w − 4cg′′ − 8cg2 = 0.

Setting k = 0, we obtain the explicit solution

g(w) = k1e
−w2

, k(w) = 0.

The corresponding solution of the (2+1)-dimensional CBS equation is

u = k1 exp
(
−2δ(z − at)−

(
x−

∫
α(t) dt

)2

e−2δ(z−at)

)
,

where

δ(z2) = c

∫
β(z2)−1 dz2, z2 = z − at.

Using cv71 + vβ , we obtain the similarity variable and similarity solutions

w = z1 − c

∫
1

β(z2)
dz2, h1 = g(w), h2 =

1
β(z2)

k(w)
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and the system of ODEs

cg′ + k′ = 0,

2kg′ − cg′′′ − 4cgg′ + 4acg′ = 0.

This system can be transformed into the second-order ODE

k2 − cg′′ − 3cg2 + 2k1g + 4acg = 0

and

k = −cg + k1.

Setting k2 = 0, we obtain the explicit solution

g = k3 sech2

(√
k3

2
w

)
.

The corresponding solution of (2+1)-dimensional CBS equation (1) is

u = k3 sech2

(√
k3

2
(x − ϕ(t)− δ(z − at))

)
, (8)

where

k3 =
k1 + 2ac

c
, ϕ(t) =

∫
α(t) dt, δ(z2) = c

∫
β(z2)−1 dz2, z2 = z − at.

We note that the arbitrary functions ϕ(t) and δ(z − at) in the soliton solutions given by (8) allows a
wide variety of qualitative and physical behaviors for these solutions. In particular, these solutions given
by (8) are localized on the curve x + ϕ(t) + δ(z − at) = 0 and decay exponentially away from the curve.
Solutions (8) with δ(z − at) = Ai(z), where Ai is the Airy function, and with δ(z − at) = sin(z2) are
respectively plotted in Figs. 1a and 1b.

Choosing ϕ(t) as a constant and a = 0 in (8), we obtain stationary solutions. We can find coherent
structures by setting δ(z − at) = 0 and ϕ(t) = t.

5. Lie symmetries for the potential CBS equation

To study the invariance properties, we consider the CBS equation written in the potential form

4htx + 4hxhxz + 2hxxhz + hxxxz = 0. (9)
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We consider the one-parameter Lie group of infinitesimal transformations in (x, z, t, h) given by

x∗ = x+ εX(x, z, t, h) +O(ε2),

z∗ = z + εZ(x, z, t, h) +O(ε2),

t∗ = t+ εT (x, z, t, h) +O(ε2),

h∗ = h+ εH(x, z, t, h) +O(ε2),

(10)

where ε is the group parameter. The associated Lie algebra of infinitesimal symmetries is the set of vector
fields of the form

v = X
∂

∂x
+ Z

∂

∂z
+ T

∂

∂t
+H

∂

∂h
. (11)

After the infinitesimals are determined, the symmetry variables are found by solving the invariant-surface
condition

Φ ≡ X
∂h

∂x
+ Z

∂h

∂z
+ T

∂h

∂t
−H = 0. (12)

Applying the classical method to Eq. (9) yields a system of equations that leads to a six-parameter Lie
group. Associated with this Lie group, we have a Lie algebra that can be represented by the generators

v1 =
∂

∂t
, v2 =

∂

∂z
,

v3 = x
∂

∂x
+ z

∂

∂z
+ t

∂

∂t
− u

∂

∂u
, v4 = 2tx

∂

∂x
+ 2tz

∂

∂t
+ t2

∂

∂z
+ (4xz − 2tu)

∂

∂u
,

v5 = 2t
∂

∂t
+ 4x

∂

∂u
, v6 = −x ∂

∂x
+ z

∂

∂t
+ u

∂

∂u

and the infinite-dimensional vector fields of the form

vα = α(t)
∂

∂x
+ 2(α′(t)z)

∂

∂u
, vβ = β(t)

∂

∂u
.

Our aim is to apply the theory of symmetry reductions to find traveling-wave solutions of the 2+1 CBS
equation. For this, we consider the following reduction arising from translations and the infinite-dimensional
vector field, i.e., v1, v2, and vα.

Reduction. Using the generator µv1 + v2 + vα, we obtain the similarity variables and similarity
solutions

z1 = x−
∫
α(t) dt, z2 = z − µt, h = 2α′(t)z + f(z1, z2)

and the PDE

4µfz1z2 − 2fz1z1fz2 − 4fz1fz1z2 + f2fz1z1z1z2 = 0. (13)

6. Further reductions to ODEs and exact solutions

The reduced PDE of 1+1 dimensions admits symmetries with arbitrary functions that lead to further
reductions to an ODE. The corresponding solutions of the (2+1)-dimensional equation involve up to three
arbitrary smooth functions.
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Equation (13) admits the symmetries

v1 =
∂

∂z1
, v2 =

∂

∂f
, v3 = z1

∂

∂z1
+ (2µz1 − f)

∂

∂f
, vβ = β(z2)

∂

∂z2
.

Using v1 + v2 + vβ , we obtain the similarity variable and similarity solutions

w = z1 −
∫

dz2
β(z2)

, f = z1 + g

and the ODE

g(IV) + 6g′g′′ + 4(1− µ)g′′ = 0.

Integrating once with respect to w and using y = g′, we obtain the second-order ODE

y′′ + 3y2 + 4(1− µ)y − c = 0.

The solutions can be written in terms of the elliptic functions.
Using v3 + vβ , we obtain the similarity variable and similarity solutions

w = z1 exp
(
−

∫
dz2
β(z2)

)
, f = µz1 +

1
z1
g

and the ODE

w3g(IV) + 6w2g′g′′ − 4wgg′′ − 4w(g′)2 + 4gg′ = 0.

Integrating once with respect to w, we obtain the third-order ODE

w2g′′′ − wg′′ + 3w(g′)2 − 4gg′ + kw = 0.

A particular solution is g =
√
kw.

7. Nonclassical symmetries of the potential CBS equation

To apply the nonclassical method to (2+1)-dimensional potential equation (9), we consider the one-
parameter Lie group of infinitesimal transformations in (x, t, z, h) given by (10) with the associated set of
vector fields (11). After the infinitesimals are determined, the symmetry variables are found by solving
invariant-surface condition (12).

We then require that this transformation leave the subset of solutions of Eqs. (9) and (12) invariant.
This leads to an overdetermined system of nonlinear equations for the infinitesimalsX(x, z, t, h), Z(x, z, t, h),
T (x, z, t, h), and H(x, z, t, h). Applying the nonclassical method to (9) yields a system of 17 equations that
lead to

X = α(t)x + β(t), Z = η(z, t), T = 1,

φ = γ + β(4αz + 2η) + 2β′z + (ηηz + ηt + 2αη)x − αu,

where α(t), β(t), γ(t), and η = η(z, t) are related by the conditions

ηηzz + (ηz)2 + ηtz − 2α′ − 4α2 = 0,

η(ηz)2 + 2ηtηz + 4αηηz + ηtt + ηηtz + 4αηt + 2α′η + 4α2η = 0.
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Integrating once with respect to z allows the first condition to be written as

(−2α′ − 4α2)z + ηηz + ηt + δ = 0

with δ = δ(t). For α = 0 and δ = 0, these conditions are satisfied if ηηz + ηt = 0. Choosing β = 0 leads to
the additional reduction

z1 = x, z2 = a(z, t), h = f(z1, z2) + d(z, t), (14)

and the (1+1)-dimensional PDE

2ψ(z2)fz1z1 + 4φ(z2)fz1z2 + 2fz1z1fz2 + 4fz1fz1z2 + f2fz1z1z1z2 = 0

with z2t = φ(z2)z2z and dz = ψ(z2)z2z. For ψ = −2φ, this equation is invariant under translations and
leads to the ODE

g(IV) + 6g′g′′ = 0

with

w = z1 + z2, f = g(w). (15)

Integrating once with respect to w and setting g′ = y yields the second-order ODE

y′′ + 3y2 = k1.

The solutions of this equation can be written in terms of the elliptic functions. A particular solution for
k1 = 3k2 is

y = 3k sech2

(√
3k
2
w

)
− k.

Considering the symmetry reductions (14) and (15), we obtain the corresponding exact solution of potential
equation (9)

h = (6k)1/2 tanh
(√

3k
2
(x+ a(z, t))

)
− k(x+ a(z, t)) + d(z, t), (16)

where φ = φ(a) is any function such that

at = φ(a)az , dz = −2at.

The breaking solutions derived by Bogoyavlenskii in [3] are

h = −cλ tanh
(
c

2
(λx− ϕ)

)

with λ = λ(z, t), ϕ = ϕ(z, t), and λt = αλ2λz, ϕt = αλ2ϕz , α = −c2.
The corresponding solution of (2+1)-dimensional CBS equation (1) derived from (16) is

u = 3k sech2

(√
3k
2
(x+ a(z, t))

)
+ k1,

where a = a(z, t) satisfies at = φ(a)az and k1 is an arbitrary constant.
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8. Conclusions

We have discussed symmetry reductions and exact solutions of the (2+1)-dimensional integrable CBS
equation. This (2+1)-dimensional equation has been written in a local form as a system of PDEs, Eqs. (3),
and as a fourth-order PDE, Eq. (9). Although the classical symmetries for (3) were derived in [7], we have
derived some new reductions from the optimal system of subalgebras. We have also applied the classical
and nonclassical methods to potential equation (9). These reductions yield some exact solutions of the
(2+1)-dimensional equation, which have a rich variety of qualitative behaviors because of the freedom in
choosing the arbitrary functions ϕ(t) and δ(z − at). We have obtained soliton solutions. Because these
arbitrary functions are included in single-soliton solution (8), the solution is localized on a curve, and the
curve can have quite a free form. Some of these solutions were derived in [3] by Bogoyavlenskii.
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papers.
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