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TRAVELING-WAVE SOLUTIONS OF THE

SCHWARZ–KORTEWEG–DE VRIES EQUATION IN 2+1

DIMENSIONS AND THE ABLOWITZ–KAUP–NEWELL–SEGUR

EQUATION THROUGH SYMMETRY REDUCTIONS

M. S. Bruzón,∗ M. L. Gandarias,∗ C. Muriel,∗ J. Ramı́rez,∗ and F. R. Romero†

One of the more interesting solutions of the (2+1)-dimensional integrable Schwarz–Korteweg–de Vries

(SKdV ) equation is the soliton solutions. We previously derived a complete group classification for the

SKdV equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reduc-

tions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions

of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. Consequently, the so-

lutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati

soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the

Ablowitz–Kaup–Newell–Segur (AKNS) equation in 2+1 dimensions. Using classical Lie symmetries, we

consider traveling-wave reductions for the AKNS equation in 2+1 dimensions. It is interesting that neither

of the (2+1)-dimensional integrable systems considered admit Virasoro-type subalgebras.
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1. Introduction

The Schwarz–Korteweg–de Vries (SKdV) equation

Φt
Φx

+ {Φ̂;x} = 0,

where

{Φ̂;x} =
(
Φxx
Φx

)
x

− 1
2

(
Φxx
Φx

)2

is the Schwarzian derivative, is well known and of great interest in both physics and mathematics [1]. This
equation was introduced by Krichever and Novikov in [2] and by Weiss in [3] and is a specialization of the
KdV equation that is invariant under the Möbius transformations, i.e., under the group PSL(2).

It is also known that the similarity solutions of integrable nonlinear partial differential equations (PDEs)
yield Painlevé transcendents [4], [5]. This connection between the Painlevé equations and soliton-type
equations led to the Ablowitz–Ramani–Segur conjecture [6]. Namely, it was demonstrated that ODEs
obtained as reductions of the well-known soliton equations yield ODEs with the Painlevé property. A
modern survey of this property can be found in [7]. Moreover, similarity reductions of the best-known
soliton equations lead to second-order Painlevé equations [4], [8].
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It is interesting to consider the similarity reductions of the Schwartzian equations to ODEs. In [9], the
similarity reduction of the SKdV equation was obtained using the scaling group.

Toda and Yu [10] constructed some new integrable models using the Calogero method. In this method,
the new equation is derived by considering a Lax pair (L, T ) of the basic equation and modifying the T

operator to include another spatial dimension z. From the SKdV equation, they thus obtained the equation

Wt +
1
4
Wxxz − WxWxz

2W
− WxxWz

4W
+

W 2
xWz

2W 2
− Wx

8
∂−1
x

(
W 2
x

W 2

)
z

= 0, (1)

where ∂−1
x f =

∫
f dx. Equation (1) is invariant under the Möbius transformation and reduces to the

SKdV equation for solutions of the form W (x, z, t) = W (x+ z, t). In [10], the corresponding Lax pair was
presented, and it was proved that it passes the Painlevé test in the sense of the Weiss–Tabor–Carnevale
method [11].

The invariance properties of the Kadomtsev–Petviashvili equation [12], the Davey–Stewartson equa-
tion [13], and some other physically important integrable nonlinear equations in (2+1)-dimensions have been
studied through Lie symmetry analysis. It was shown that all these equations admit infinite-dimensional
Lie point groups with a specific Kac–Moody–Virasoro structure. In [14], Senthil Velan and Lakshmanan
presented two examples of (2+1)-dimensional integrable equations that do not admit Virasoro-type subal-
gebras. But they claim that both systems admit a specific type of symmetry. For example, both equations
allow infinitesimals up to the quadratic power explicitly in t. They also do not admit any arbitrary func-
tion in the infinitesimal variations in t, which in turn leads to the absence of Kac–Moody–Virasoro-type
subalgebras.

In this work, we consider the (2+1)-dimensional integrable generalization of SKdV equation (1). Al-
though this (2+1)-dimensional SKdV equation appears in a nonlocal form, using the transformations

W = φx, φ = eψ, ψx = u, ψt = v, (2)

we can write Eq. (1) as the system of differential equations

4u2vx − 4uuxv + u2uxxz − uuxxuz − 3uuxuxz + 3u2
xuz − u4uz = 0,

ut − vx = 0.
(3)

It is interesting that system (3), as well as Eq. (1), was first introduced by Kudriashov and Pickering [15].
Via the Miura transform

hx =
uxx
4u

− 3u2
x

8u2
− u2

8
, hz = − v

u
,

the SKdV is closely related to the equation for h

4hxt + hxxxz + 8hxzhx + 4hzhxx = 0. (4)

This equation is the well-known Ablowitz–Kaup–Newell–Segur (AKNS) equation in 2+1 dimensions. We
note that one of the systems considered in [14], the breaking soliton equation, can also be written as the
AKNS equation by making a transformation.

In this paper, we derive traveling-wave reductions with a variable velocity depending on the form of an
arbitrary function. For this, we apply the classical Lie method to system (3) and also to the related Eq. (4),
and we consider the reductions derived from the translation groups and from the infinite-dimensional group.
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An interesting feature of our study is that both integrable systems in 2+1 dimensions, the SKdV and
the AKNS, admit infinite-dimensional Lie point symmetry groups, but they do not admit Virasoro-type
subalgebras.

The invariance study of these reduced systems and (1+1)-dimensional equations and further reductions
lead to systems of ODEs and to second-order integrable ODEs. The solutions of all these ODEs are
expressible in terms of known functions; some of them can be expressed in terms of the second and third
Painlevé transcendents. We also derive exact solutions for the (2+1)-dimensional integrable generalization
of the SKdV equation. The appearance of arbitrary functions allows a wide variety of qualitative and
physical behaviors for these solutions. In particular, we observe the interaction of a Wadati soliton with
different curve solitons.

2. Classical Lie symmetries

To apply the classical method to (2+1)-dimensional system (3), we consider the one-parameter Lie
group of infinitesimal transformations in (x, t, z, u, v). The associated Lie algebra of infinitesimal symmetries
is the corresponding set of vector fields of the form

v = X
∂

∂x
+ Z

∂

∂z
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v
.

We then require that this transformation leave the set of solutions of system (3) invariant. This yields an
overdetermined linear system of equations for the infinitesimals X(x, z, t, u, v), Z(x, z, t, u, v), T (x, z, t, u, v),
U(x, z, t, u, v), and V (x, z, t, u, v). After the infinitesimals are determined, the symmetry variables are found
by solving the invariant-surface conditions

Φ1 ≡ X
∂u

∂x
+ Z

∂u

∂z
+ T

∂u

∂t
− U = 0,

Φ2 ≡ X
∂v

∂x
+ Z

∂u

∂z
+ T

∂v

∂t
− V = 0.

Applying the classical method to system (3) yields a system of equations that leads to a four-parameter
Lie group. Associated with this Lie group, we have a Lie algebra that can be represented by the generators

v1 =
∂

∂t
, v2 =

∂

∂z
,

v3 = x
∂

∂x
− 2z

∂

∂z
− u

∂

∂u
, v4 = t

∂

∂t
+ z

∂

∂z
− v

∂

∂v

and the infinite-dimensional vector fields of the form

vα = α(t)
∂

∂x
− α′(t)u

∂

∂v
.

The associated algebra {vα} with α(t) ∈ C∞(R) is not a Virasoro algebra, because the commutation
relation between vα1 and vα2 is

[vα1 ,vα2 ] = 0.

To find nonequivalent branches of solutions, we construct the one-dimensional optimal system of sub-
algebras. The corresponding generators of the optimal system of subalgebras are

〈µv3 + v4〉,
〈
µv2 +

1
2
v3 + v4

〉
, 〈µv1 + v3〉,

〈µv1 + v2〉, 〈µv3〉, 〈v4〉, 〈v1〉,
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where µ ∈ R\ {0} is arbitrary. In previous papers, we listed the similarity variables and similarity solutions
as well as the systems of PDEs obtained when system (3) is reduced using the generators {ui}, i = 1, . . . , 7,
which are obtained by adding the infinite-dimensional generator vα to the generators of an optimal system.

Our aim in this paper is to use the theory of symmetry reductions to find traveling-wave solutions
for the (2+1)-dimensional SKdV equation. For this, we consider the following reductions arising from
translations and the infinite-dimensional vector field, i.e., from v1, v2, and vα.

Reduction 1. Using the generator µv1 + v2 + vα, we obtain the similarity variables and similarity
solutions

z1 = x− 1
µ

∫
α(t) dt, z2 = µz − t,

u = f(z1, z2), v = g(z1, z2)− 1
µ
αf(z1, z2)

(5)

and the system of PDEs S1

µ(−ffz1z1fz2 + 3f2
z1fz2 − f4fz2 + f2fz1z1z2 − 3ffz1fz1z2) + 4f2gz1 − 4ffz1g = 0,

gz1 + fz2 = 0.

Reduction 2. Using the generator v1+vα, we obtain the similarity variables and similarity solutions

z1 = x−
∫

α(t) dt, z2 = z,

u = f(z1, z2), v = g(z1, z2)− αf(z1, z2)
(6)

and the system of PDEs S2

− ffz1z1fz2 + 3f2
z1fz2 − f4fz2 + f2fz1z1z2 − 3ffz1fz1z2 − 4ffz1g = 0,

gz2 = 0.

Reduction 3. Using the generator v2+vα, we obtain the similarity variables and similarity solutions

z1 = z − x

α(t)
, z2 = t,

u = f(z1, z2), v = g(z1, z2)− zα′(t)f(z1, z2)

and the system of PDEs S3

− 4αf2gz1 + 4αffz1g + f2fz1z1z1 − 4ffz1fz1z1 + 3f3
z1 − α2f4fz1 = 0,

− αz2z1fz1 + gz1 + αfz2 = 0.

3. Reductions to ODEs and exact solutions

In several cases, the reduced systems of (1+1)-dimensional PDEs admit symmetries that lead to further
reductions to systems of ODEs. We again use the techniques of Lie group theory. Moreover, all these systems
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of ODEs can be reduced to second-order ODEs whose solutions are expressible in terms of known functions,
such as the second and third Painlevé transcendents [16].

Two of these systems of (1+1)-dimensional PDEs admit symmetries with arbitrary functions. The
corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions.

System S1 admits the symmetries

v11 =
∂

∂z1
, vβ = β(z2)

∂

∂z2
− β′(z2)g

∂

∂g
.

Using cv11 + vβ , we obtain the similarity variable and similarity solutions

w = z1 − c

∫
dz2

β(z2)
, f = h, g =

1
β(z2)

k(w) (7)

and the system of ODEs

k′ − ch′ = 0,

µc(4hh′h′′ − h2h′′′ − 3(h′)3 + h4h′) + 4h2k′ − 4hh′k = 0.

This system is equivalent to the second-order ODE

2dh+ cµ(h4 + (h′)2 − hh′′)− k1h
3 = 0

and

k = ch+ k1.

The general solution can be written in terms of the Jacobi elliptic functions; consequently, there exist
solutions such as

h =
a1

a2 + sn2(a4 + a3x | a5)
,

where a1, a2, a3, and a4 are arbitrary constants and

a5 = − 1
a2

− a2
1

4a2
2a

2
3(1 + a2)

.

We have found several particular solutions with a suitable choice of the parameters, and the more
interesting ones are

h = d1, h = ± d2

1 + ed2(w−d1) ,

h = ± 2d2

(w − d1)2 − d2
2 , h =

d2

cos (d2(w − d1))
,

(8)

where d1 and d2 are arbitrary constants.
Considering transformations (2) as well as the corresponding symmetry reductions (5) and (7), we

find from (8) (after some simplifications) that the corresponding family of solutions for (2+1)-dimensional
SKdV equation (1) can be written as

W = d1e
d1xρ(z, t), (9)

W =
ρ(z)

cosh2(d1 + d2x+ ϕ(t) + δ(−t+ µz))
, (10)

W =
ρ(z)

1 + sin(d2(d1 − x+ ϕ(t) + δ(−t+ µz)))
, (11)
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where

ϕ(t) =
1
µ

∫
e−t/µα(t) dt, δ(−t+ µz) = c

∫
1

β(z2)
dz2

and ρ = ρ(z, t) are three arbitrary functions.
System S2 admits the symmetries

v21 =
∂

∂z1
, v22 = z1

∂

∂z1
− f

∂

∂f
− 2g

∂

∂g
,

vβ = β(z2)
∂

∂z2
− β′(z2)g

∂

∂g
.

Using cv21 + v22 + vβ , we obtain the similarity variable and similarity solutions

w = log(z1 + c)−
∫

dz2

β(z2)
, f =

h(w)
z1 + c

,

g =
1

β(z2)
exp

(
−2

∫
dz2

β(z2)

)
k(w)

and the system of ODEs

k′ = 0,

(4hh′ − 4h2)ke2w − 4hh′h′′ + h2h′′′ + 3(h′)3 − h4h′ = 0.

Changing the variables as e2w = z, h(w) = Y (z), dividing by u4z, and integrating once with respect to z,
we obtain

Y ′′ =
(Y ′)2

Y
+

1
4z2

Y 3 +
k1

8z2
Y 2 − Y

z
+

k

2z
= 0.

This equation is the Painlevé III equation (1906)

Y ′′ =
(Y ′)2

Y
+

αY 2 + γY 3

4z2
+

β

4z
+

δ

4Y

with α = k1/2, β = 2k, γ = 1, and δ = 0.
Using v21 + vβ , we obtain the similarity variable and similarity solutions

w = z1 −
∫

dz2

β(z2)
, f = h, g =

1
β(z2)

k(w)

and the system of ODEs

k′ = 0,

− 4hh′h′′ + h2h′′′ + 3(h′)3 − h4h′ + 4h2k′ − 4hh′k = 0.

This system can be transformed to the second-order autonomous ODE

h′′ =
3
2
(h′)2

h
+

h3

2
− k2

2
h+ 4c
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and

k = c.

The solution can be written in terms of the elliptic functions.
Using vβ , we obtain the similarity variable and similarity solutions

w = z1, f = h, g = β(z2)c. (12)

If we set c = 0, then h becomes arbitrary.
Considering transformations (2) as well as the corresponding symmetry reductions (6) and (12), we

find that the corresponding family of solutions of (2+1)-dimensional SKdV equation (1) is

W = ρ(z)f(x− ϕ(t)),

where ρ and f are arbitrary functions.
System S3 admits the symmetries

v31 = β(z2)
∂

∂z1
+ (αβ′ + α′β)f

∂

∂g
,

v32 = − α′(z2)
α2(z2)

z1
∂

∂z1
+

1
α(z2)

∂

∂z2
+

α′(z2)
α2(z2)

g
∂

∂g
.

Using v32, we obtain the similarity variable and similarity solutions

w = z1α(z2), f = h, g =
1
z1
k(w)

and the system of ODEs

k − wk′ = 0,

w2h2h′′′ − 4w2hh′h′′ + 3w2(h′)3 − w2h4h′ − 4wh2k′ + 4whh′k + 4h2k = 0.

This system is equivalent to the second-order autonomous ODE

h′′ =
3
2
(h′)2

h
+

h3

2
− k2h+ 4k1

and

k = k1w.

The solution can be written in terms of the elliptic functions. A particular solution for the SKdV equation
is

W =
ρ(z)

(2 + c1(c2 + x+ zα(t)))2
.
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4. Classical Lie symmetries of the (2+1)-dimensional AKNS equation

To study the invariance properties, we consider AKNS equation (4). The invariance of Eq. (4) under
the infinitesimal point transformations in (x, t, z, h) with the associated set of vector fields of the form

v = X
∂

∂x
+ Z

∂

∂z
+ T

∂

∂t
+H

∂

∂h

leads to the following infinite-dimensional Lie algebra of symmetries.
Applying the classical method to Eq. (4) yields a system of equations that leads to a six-parameter Lie

group. Associated with this Lie group, we have a Lie algebra that can be represented by the generators

v1 =
∂

∂t
, v2 =

∂

∂z
,

v3 = x
∂

∂x
+ 2z

∂

∂z
+ 4t

∂

∂t
− u

∂

∂u
, v4 = tx

∂

∂x
+ 2tz

∂

∂t
+ 2t2

∂

∂z
+ (xz − tu)

∂

∂u
,

v5 = 2t
∂

∂t
+ x

∂

∂u
, v6 = −x

∂

∂x
+ 2z

∂

∂t
+ u

∂

∂u

and infinite-dimensional vector fields of the form

vα = α(t)
∂

∂x
+ α′(t)z

∂

∂u
, vβ = β(t)

∂

∂u
.

It is interesting that the associated algebra does not contain a Virasoro algebra.
Our aim is to use the theory of symmetry reductions to find traveling-wave solutions of the (2+1)-

dimensional AKNS equation. For this, we consider the following reduction arising from translations and
the infinite-dimensional vector field, i.e., from v1, v2, and vα.

Reduction. Using the generator µv1 + v2 + vα, we obtain the similarity variables and similarity
solutions

z1 = x−
∫

α(t) dt, z2 = z − µt, h = αz2 + f(z1, z2)

and the PDE

4µfz1z2 − 4fz1z1fz2 − 8fz1fz1z2 − fz1z1z1z2 = 0. (13)

5. Reduction to an ODE and exact solutions

The reduced (1+1)-dimensional PDE admits symmetries with arbitrary functions that lead to further
reductions to an ODE. The corresponding solutions of the (2+1)-dimensional equation involve up to three
arbitrary smooth functions.

Equation (13) admits the symmetries

v1 =
∂

∂z1
, v2 =

∂

∂f
,

v3 = z1
∂

∂z1
+ (µz1 − f)

∂

∂f
, vβ = β(z2)

∂

∂z2
.
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Using cv1 + vβ , we obtain the similarity variable and similarity solution

w = z1 −
∫

dz2

β(z2)
, f = z1 + g(w)

and the ODE

g(IV) + (8− 4µ)g′′ + 12g′g′′.

Integrating once with respect to w and using y = g′, we obtain the second-order ODE

y′′ + 6y2 + (8 − 4µ)y − c = 0.

The solutions can be written in terms of the elliptic functions. We have found several particular solutions
with a suitable choice of the parameters; some of them are

g = c1w + c2,

g =
µ− 2
3

w +
1

w + c1
+ c2,

g =
µ− 2− c21

3
w + c1 tanh(c1w + c2) + c3.

The corresponding solutions of the AKNS equation are

h = c2(x− α(t)) + β(z − µt) + α′(t)(z − µt),

h =
µ− 2
3

(x− α(t) − β(z − µt)) + x− α(t) +

+ α′(t)(z − µt) +
1

x− α(t) − β(z − µt) + c1
+ c2,

h =
µ− 2− c21

3
(x− α(t)− β(z − µt)) + x− α(t) + α′(t)(z − µt) +

+ c1 tanh(c1(x− α(t) − β(z − µt)) + c2) + c3.

6. Some explicit solutions

The appearance of the arbitrary functions in the solutions allows a wide variety of qualitative and physi-
cal behaviors for these solutions. With appropiate choices for the arbitrary functions, we previously [16], [17]
exhibited large families of solitary waves, coherent structures as n-soliton bound states, kinks, and a great
variety of stationary solutions such as multidromions. By choosing f as a compact support C∞, we also
obtained compactons.

The arbitrary function ρ(z, t) in solution (9) can represent any interaction process in 1+1 dimensions;
moreover, any sum of coherent structures in 1+1 dimensions provides new solutions. These last solutions
describe an elastic collision. In particular, we can choose a great variety of solutions. As an example, we
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Fig. 1. Wadati soliton and line soliton.
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Fig. 2. Wadati soliton and parabolic soliton.

can observe the interaction modulated by eax of a Wadati soliton [18] in z given by

2∂z

(
arctan

(
c sin(nz + dt)
n cosh(cz + et)

))

with a line soliton in (z, t).
In Fig. 1, we can observe the interaction of a Wadati soliton in (z, t) for n = 3 and c = 1 with a line

soliton that evolves over z = 10t.
In Fig. 2, we can observe the interaction of a Wadati soliton with a parabolic soliton that evolves over

the curve z2 − 10t− 3 = 0.
In Fig. 3, for t = −0.2, we can see the interaction of a Wadati soliton with a line soliton that evolves

over z = 10t modulated by ex/10 in the xz plane.
We can similarly consider kinks, multidromions, etc., in (z, t) modulated by eax.

7. Conclusions

We have discussed symmetry reductions and exact solutions of the (2+1)-dimensional integrable gen-
eralization of the SKdV equation and also the AKNS equation in 2+1 dimensions. This last equation is
closely related to the SKdV equation via a Miura transformation. Using classical Lie symmetries, we have
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0.4
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Fig. 3. Wadati soliton and line soliton, t = −0.2.

considered traveling-wave reductions for these integrable equations in 2+1 dimensions. It is interesting that
the two integrable equations considered in 2+1 dimensions do not admit Virasoro-type subalgebras.

Using the classical Lie method, we have obtained systems of PDEs in 1+1 dimensions and systems
of ODEs; by further reductions, we have obtained second-order integrable ODEs whose solutions are all
expressible in terms of known functions, some of them expressible in terms of the second and third Painlevé
transcendents. For the SKdV in 2+1 dimensions, we have obtained families of solutions that have a rich
variety of qualitative behaviors. This results from the freedom in choosing the arbitrary functions as in
exρ(z, t).
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5. B. Gambier, Acta Math., 33, 1 (1909); P. Painlevé, Bull. Soc. Math. France, 28, 201 (1900); Acta Math., 25,

1 (1902).

6. M. J. Ablowitz, A. Ramani, and H. Segur, Lett. Nuovo Cimento, 23, 333 (1978).

7. R. Conte, ed., The Painlevé Property : One Century Later (CRM Series in Mathematical Physics), Springer,
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